首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1363篇
  免费   118篇
  2023年   6篇
  2022年   9篇
  2021年   21篇
  2020年   12篇
  2019年   20篇
  2018年   14篇
  2017年   16篇
  2016年   34篇
  2015年   60篇
  2014年   63篇
  2013年   94篇
  2012年   92篇
  2011年   83篇
  2010年   58篇
  2009年   57篇
  2008年   75篇
  2007年   92篇
  2006年   104篇
  2005年   90篇
  2004年   98篇
  2003年   85篇
  2002年   66篇
  2001年   17篇
  2000年   15篇
  1999年   22篇
  1998年   16篇
  1997年   14篇
  1996年   16篇
  1995年   13篇
  1994年   12篇
  1993年   6篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有1481条查询结果,搜索用时 15 毫秒
991.
Ito N  Sugiyama M 《Uirusu》2007,57(2):191-198
Rabies virus causes lethal neurological symptoms in humans and animals. Rabies epidemics have continued to occur throughout the world, despite the fact that rabies can be effectively prevented by vaccination. The development of inexpensive and safe attenuated live vaccines and the establishment of cures are the keys to control rabies. To achieve these objectives, it is important to elucidate mechanism by which rabies virus causes disease. Here, previous studies on the pathogenesis of rabies virus are reviewed and ways to apply previous findings to rabies control are also discussed.  相似文献   
992.
CSF-1 is a hemopoietic growth factor, which plays an essential role in macrophage and osteoclast development. Alternative splice variants of CSF-1 are synthesized as soluble or membrane-anchored molecules, although membrane CSF-1 (mCSF-1) can be cleaved from the cell membrane to become soluble CSF-1. The activities involved in this proteolytic processing, also referred to as ectodomain shedding, remain poorly characterized. In the present study, we examined the properties of the mCSF-1 sheddase in cell-based assays. Shedding of mCSF-1 was up-regulated by phorbol ester treatment and was inhibited by the metalloprotease inhibitors GM6001 and tissue inhibitor of metalloproteases 3. Moreover, the stimulated shedding of mCSF-1 was abrogated in fibroblasts lacking the TNF-alpha converting enzyme (TACE, also known as a disintegrin and metalloprotease 17) and was rescued by expression of wild-type TACE in these cells, strongly suggesting that the stimulated shedding is TACE dependent. Additionally, we observed that mCSF-1 is predominantly localized to intracellular membrane compartments and is efficiently internalized in a clathrin-dependent manner. These results indicate that the local availability of mCSF-1 is actively regulated by ectodomain shedding and endocytosis. This mechanism may have important implications for the development and survival of monocyte lineage cells.  相似文献   
993.
Low-resolution three-dimensional structures of acto-myosin subfragment-1 (S1) complexes were retrieved from X-ray fiber diffraction patterns, recorded either in the presence or absence of ADP. The S1 was obtained from various myosin-II isoforms from vertebrates, including rabbit fast-skeletal and cardiac, chicken smooth and human non-muscle IIA and IIB species, and was diffused into an array of overstretched, skinned skeletal muscle fibers. The S1 attached to the exposed actin filaments according to their helical symmetry. Upon addition of ADP, the diffraction patterns from acto-S1 showed an increasing magnitude of response in the order as listed above, with features of a lateral compression of the whole diffraction pattern (indicative of increased radius of the acto-S1 complex) and an enhancement of the fifth layer-line reflection. The structure retrieval indicates that these changes are mainly due to the swing of the light chain (LC) domain in the direction consistent with the cryo-electron microscopic results. In the non-muscle isoforms, the swing is large enough to affect the manner of quasi-crystal packing of the S1-decorated actin filaments and their lattice dimension, with a small change in the twist of actin filaments. Variations also exist in the behavior of the 50K-cleft, which apparently opens upon addition of ADP to the non-muscle isoforms but not to other isoforms. The fast-skeletal S1 remains as the only isoform that does not clearly exhibit either of the structural changes. The results indicate that the "conventional" myosin-II isoforms exhibit a wide variety of structural behavior, possibly depending on their functions and/or the history of molecular evolution.  相似文献   
994.
995.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   
996.
Terebelliformia is a benthic group of marine annelid worms. The bioluminescence of several species has been reported in taxonomical and histological literature, but very little information is known about the biochemical aspects of this phenomenon. In this study, we examined the basic properties of the luminescence system using an extract of the Japanese terebelliform worm, Thelepus japonicus. The bioluminescence extract was soluble in water, and emitted blue‐green light at λmax 508 nm following the addition of divalent cations. This triggering action was highly specific to Fe2+ and addition of ATP, H2O2 or coelenterazine did not enhance activity. The bioluminescence was inactivated by heat treatment and organic solvents, indicating the involvement of a protein component. These results suggested that Thelepus worm produces light using a novel system that differs from that in other known luminescent annelids.  相似文献   
997.
998.
Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC12 cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H2O2, catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.  相似文献   
999.
Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF‐Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding β‐glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2O2), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up‐regulation of defence‐related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号