首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   49篇
  2021年   3篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   11篇
  2015年   16篇
  2014年   17篇
  2013年   33篇
  2012年   21篇
  2011年   30篇
  2010年   14篇
  2009年   20篇
  2008年   29篇
  2007年   32篇
  2006年   33篇
  2005年   26篇
  2004年   24篇
  2003年   24篇
  2002年   26篇
  2001年   24篇
  2000年   23篇
  1999年   20篇
  1998年   8篇
  1997年   10篇
  1996年   8篇
  1995年   2篇
  1994年   8篇
  1993年   5篇
  1992年   13篇
  1991年   12篇
  1990年   14篇
  1989年   10篇
  1988年   14篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   9篇
  1983年   9篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1968年   2篇
排序方式: 共有639条查询结果,搜索用时 15 毫秒
111.
Inducible nitric-oxide synthase (iNOS, NOS2) plays a prominent role in macrophage bactericidal and tumoricidal activities. A relatively large amount of NO produced via iNOS, however, also targets the macrophage itself for apoptotic cell death. To uncover the intrinsic mechanisms of iNOS regulation, we have characterized the SPRY domain- and SOCS box-containing protein 1 (SPSB1), SPSB2, and SPSB4 that interact with the N-terminal region of iNOS in a D-I-N-N-N sequence-dependent manner. Fluorescence microscopy revealed that these SPSB proteins can induce the subcellular redistribution of iNOS from dense regions to diffused expression in a SOCS box-dependent manner. In immunoprecipitation studies, both Elongin C and Cullin-5, components of the multi-subunit E3 ubiquitin ligase, were found to bind to iNOS via SPSB1, SPSB2, or SPSB4. Consistently, iNOS was polyubiquitinated and degraded in a proteasome-dependent manner when SPSB1, SPSB2, or SPSB4 was expressed. SPSB1 and SPSB4 had a greater effect on iNOS regulation than SPSB2. The iNOS N-terminal fragment (residues 1-124 of human iNOS) could disrupt iNOS-SPSB interactions and inhibit iNOS degradation. In lipopolysaccharide-treated macrophages, this fragment attenuated iNOS ubiquitination and substantially prolonged iNOS lifetime, resulting in a corresponding increase in NO production and enhanced NO-dependent cell death. These results not only demonstrate the mechanism of SPSB-mediated iNOS degradation and the relative contributions of different SPSB proteins to iNOS regulation, but also show that iNOS levels are sophisticatedly regulated by SPSB proteins in activated macrophages to prevent overproduction of NO that could trigger detrimental effects, such as cytotoxicity.  相似文献   
112.
113.
114.
CsgD, the master regulator of biofilm formation, activates the synthesis of curli fimbriae and extracellular polysaccharides in Escherichia coli. To obtain insights into its regulatory role, we have identified a total of 20 novel regulation target genes on the E. coli genome by using chromatin immunoprecipitation (ChIP)-on-chip analysis with a high-density DNA microarray. By DNase I footprinting, the consensus CsgD-binding sequence predicted from a total of 18 target sites was found to include AAAAGNG(N(2))AAAWW. After a promoter-lacZ fusion assay, the CsgD targets were classified into two groups: group I genes, such as fliE and yhbT, are repressed by CsgD, while group II genes, including yccT and adrA, are activated by CsgD. The fliE and fliEFGH operons for flagellum formation are directly repressed by CsgD, while CsgD activates the adrA gene, which encodes an enzyme for synthesis of cyclic di-GMP, a bacterial second messenger, which in turn inhibits flagellum production and rotation. Taking these findings together, we propose that the cell motility for planktonic growth is repressed by CsgD, thereby promoting the switch to biofilm formation.  相似文献   
115.
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group “hemichordates.” Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord‐forming region in acorn worm juveniles is expressed in the club‐shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord. genesis 52:925–934, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
116.
Bud dormancy is an adaptive strategy that perennials use to survive unfavorable conditions. Gentians (Gentiana), popular alpine flowers and ornamentals, produce overwintering buds (OWBs) that can persist through the winter, but the mechanisms regulating dormancy are currently unclear. In this study, we conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. Multivariate analysis of metabolite profiles revealed metabolite patterns characteristic of dormant states. The concentrations of gentiobiose [β-d-Glcp-(1→6)-d-Glc] and gentianose [β-d-Glcp-(1→6)-d-Glc-(1→2)-d-Fru] significantly varied depending on the stage of OWB dormancy, and the gentiobiose concentration increased prior to budbreak. Both activation of invertase and inactivation of β-glucosidase resulted in gentiobiose accumulation in ecodormant OWBs, suggesting that gentiobiose is seldom used as an energy source but is involved in signaling pathways. Furthermore, treatment with exogenous gentiobiose induced budbreak in OWBs cultured in vitro, with increased concentrations of sulfur-containing amino acids, GSH, and ascorbate (AsA), as well as increased expression levels of the corresponding genes. Inhibition of GSH synthesis suppressed gentiobiose-induced budbreak accompanied by decreases in GSH and AsA concentrations and redox status. These results indicate that gentiobiose, a rare disaccharide, acts as a signal for dormancy release of gentian OWBs through the AsA-GSH cycle.  相似文献   
117.
Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15±1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51±3% of the baseline and calcein-loadable mitochondria was 6±1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73±2% and 30±7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.  相似文献   
118.
N Ogasawara  S Moriya  G Mazza  H Yoshikawa 《Gene》1986,45(2):227-231
A dnaG mutation of Bacillus subtilis, dnaG5, was found to be linked closely to recF. We have reported previously that two putative dna genes, 'dnaA' and 'dnaN', highly homologous to Escherichia coli's dnaA and dnaN, respectively, were located adjacent to recF [Ogasawara et al., EMBO J., 4 (1985) 3345-3350]. Transformation by various fragments cloned from the 'dnaA'-recF region of the wild-type cell revealed that a 532-bp AluI fragment containing 5'-portion of the 'dnaN' gene could transform the dnaG5 mutation. The nucleotide (nt) sequence of the same fragment cloned from the mutant cell shows a single nt change in the ORF of 'dnaN' which in turn causes a single amino acid alteration from Gly to Arg. The 'dnaN' gene is now proven to be a dna gene, mutations in which result in instant arrest of chromosomal replication.  相似文献   
119.
120.
Host cell proteases responsible for activation of viral fusion glycoproteins are an important determinant for spread and tropism of various animal viruses. Exemplifying such proteases for the first time, we isolated an endoprotease from chick embryo, that activates para- and orthomyxovirus fusion glycoproteins by cleaving their precursor proteins at a specific, single arginine site. The protease is a calcium dependent serine protease consisting of two subunits, the 33 kd catalytic chain and the 23 kd chain possibly required for Ca2+ binding, and was found to be highly homologous, if not identical, to the blood clotting factor X(FX), a member of the prothrombin family. Its high efficiency and specificity in cleavage reactions was attributable to the properties characteristic of FX. Its role in vivo was strongly supported by cleavage inhibition in ovo highly selective for this virus group with a specific peptide inhibitor against FX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号