首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
  127篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   2篇
  2009年   4篇
  2008年   7篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   11篇
  2002年   6篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1981年   4篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有127条查询结果,搜索用时 0 毫秒
41.
42.
BackgroundWe have been developing the Self-Propelling Capsule Endoscope (SPCE) that allows for controllability from outside of the body and real-time observation. What kind of capsule endoscope (CE) is suitable for a controllable SPCE is unclear and a very critical point for clinical application. We compared observing ability of three kinds of SPCEs with different viewing angles and frame rates.MethodsEleven buttons were sewed in an excised porcine stomach. Four examiners controlled the SPCE using PillCamSB2, -ESO2, and -COLON2 (Given Imaging Ltd., Israel), for 10 minutes each with the aim of detecting as many buttons and examining them as closely as possible. The ability to find lesions was assessed based on the number of detected buttons. The SPCE-performance score (SPS) was used to evaluate the ability to examine the lesions in detail.ResultsThe SPCE-ESO2, -COLON2, and -SB2 detected 11 [interquartile range (IQR): 0], 10.5 (IQR, 0.5), and 8 (IQR, 1.0) buttons, respectively. The SPCE-ESO2 and -COLON2 had a significantly better ability to detect lesions than the -SB2 (p < 0.05). The SPCE-ESO2, -COLON2, and -SB2 had significantly different SPS values of 22 (IQR, 0), 16.5 (IQR, 1.5), and 14 (IQR, 1.0), respectively (p < 0.05 for all comparisons; SPCE-SB2 vs. -ESO2, -SB2 vs. -COLON2, and -ESO2 vs. -COLON2).ConclusionsPillCamESO2 is most suitable in different three CEs for SPCE for examining lesions in detail of the stomach.  相似文献   
43.
44.
45.
The inhibitory activity of an angiotensin I-converting enzyme (ACE) detected in soy sauce was fractionated into two major fractions of high molecular weight (Hw) and low molecular weight (Lw) by gel filtration chromatography on Bio-gel P-2 after treating with ethanol. The Hw fraction reduced the blood pressure in hypertensive rats after orally administering, while the Lw fraction did not. The ACE inhibitor in the Hw fraction was further purified by Dowex 50W ion-exchange chromatography and four subsequent steps of HPLC. On the basis of the SIMS-mass spectrum, NMR spectrum and other characteristics, the purified ACE inhibitor was identified as nicotianamine (N-[N-(3-amino-3-carboxypropyl)-3-amino-3- carboxypropyl]azetidine-2-carboxylic acid). The IC50 value for this ACE was 0.26 µM.  相似文献   
46.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   
47.
48.
Genome reduction strategies to create genetically improved cellular biosynthesis machineries for proteins and other products have been pursued by use of a wide range of bacteria. We reported previously that the novel Bacillus subtilis strain MGB874, which was derived from strain 168 and has a total genomic deletion of 874 kb (20.7%), exhibits enhanced production of recombinant enzymes. However, it was not clear how the genomic reduction resulted in elevated enzyme production. Here we report that deletion of the rocDEF-rocR region, which is involved in arginine degradation, contributes to enhanced enzyme production in strain MGB874. Deletion of the rocDEF-rocR region caused drastic changes in glutamate metabolism, leading to improved cell yields with maintenance of enzyme productivity. Notably, the specific enzyme productivity was higher in the reduced-genome strain, with or without the rocDEF-rocR region, than in wild-type strain 168. The high specific productivity in strain MGB874 is likely attributable to the higher expression levels of the target gene resulting from an increased promoter activity and plasmid copy number. Thus, the combined effects of the improved cell yield by deletion of the rocDEF-rocR region and the increased specific productivity by deletion of another gene(s) or the genomic reduction itself enhanced the production of recombinant enzymes in MGB874. Our findings represent a good starting point for the further improvement of B. subtilis reduced-genome strains as cell factories for the production of heterologous enzymes.  相似文献   
49.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. To identify biologically relevant genes with prognostic and therapeutic significance in PDAC, we first performed the microarray gene-expression profiling in 45 matching pairs of tumor and adjacent non-tumor tissues from resected PDAC cases. We identified 36 genes that were associated with patient outcome and also differentially expressed in tumors as compared with adjacent non-tumor tissues in microarray analysis. Further evaluation in an independent validation cohort (N = 27) confirmed that DPEP1 (dipeptidase 1) expression was decreased (T: N ratio ∼0.1, P<0.01) in tumors as compared with non-tumor tissues. DPEP1 gene expression was negatively correlated with histological grade (Spearman correlation coefficient = −0.35, P = 0.004). Lower expression of DPEP1 in tumors was associated with poor survival (Kaplan Meier log rank) in both test cohort (P = 0.035) and validation cohort (P = 0.016). DPEP1 expression was independently associated with cancer-specific mortality when adjusted for tumor stage and resection margin status in both univariate (hazard ratio = 0.43, 95%CI = 0.24–0.76, P = 0.004) and multivariate analyses (hazard ratio = 0.51, 95%CI = 0.27–0.94, P = 0.032). We further demonstrated that overexpression of DPEP1 suppressed tumor cells invasiveness and increased sensitivity to chemotherapeutic agent Gemcitabine. Our data also showed that growth factor EGF treatment decreased DPEP1 expression and MEK1/2 inhibitor AZD6244 increased DPEP1 expression in vitro, indicating a potential mechanism for DPEP1 gene regulation. Therefore, we provide evidence that DPEP1 plays a role in pancreatic cancer aggressiveness and predicts outcome in patients with resected PDAC. In view of these findings, we propose that DPEP1 may be a candidate target in PDAC for designing improved treatments.  相似文献   
50.
Biodegradation of cellouronate (β-1,4-linked polyglucuronic acid sodium salt, β-1,4-linked glucuronan), which was prepared from regenerated cellulose by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation, was investigated. A bacterial strain with the ability to degrade cellouronate was isolated from soil collected in a natural environment, and identified as Brevundimonas sp. SH203 by comparing the nucleotide sequences of its 16S rDNA with those registered in the GenBank database. Cellouronate lyase-I (CUL-I), being responsible for the depolymerization of cellouronate, was purified to homogeneity from cell-free extracts. CUL-I was a monomeric protein with the molecular mass of 39 kDa by SDS–PAGE and 37 KDa by size exclusion chromatography (SEC). The enzyme activity was optimum at pH 7.5 and was inhibited by some divalent metal ions such as Mg2+, Fe2+ and Mn2+. The enzymatic reaction products were analyzed by SEC, TLC and 13C NMR. The results indicated that CUL-I catalyzed to depolymerize cellouronate endolytically to oligocellouronates and monomeric uronate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号