首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   77篇
  2022年   5篇
  2021年   7篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   25篇
  2013年   55篇
  2012年   29篇
  2011年   36篇
  2010年   19篇
  2009年   16篇
  2008年   32篇
  2007年   37篇
  2006年   28篇
  2005年   36篇
  2004年   36篇
  2003年   40篇
  2002年   50篇
  2001年   40篇
  2000年   22篇
  1999年   22篇
  1998年   15篇
  1997年   7篇
  1996年   7篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1992年   22篇
  1991年   22篇
  1990年   14篇
  1989年   13篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   9篇
  1984年   13篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   10篇
  1979年   4篇
  1978年   9篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   3篇
  1970年   3篇
  1969年   2篇
排序方式: 共有823条查询结果,搜索用时 15 毫秒
91.
In order to study the effect of glycosylation on its biological activities, and to develop TNFα with less deleterious effects, recombinant human TNFα was chemically coupled with N-acetylneuraminic acid (NeuAc). NeuAc with C9 spacer was coupled to TNFα by acyl azide method. Two glycosylated TNFαs, designated L NeuAc-TNFα and H NeuAc-TNFα, were purified by anion-exchange chromatography. NeuAc coupling to TNFα was confirmed by lectin blotting. Average number of carbohydrate molecules introduced per molecule of L NeuAc-TNFα and H NeuAc-TNFα were estimated to be 1.0 and 1.5, respectively. We examined a variety of TNFα activities in vitro, including antiproliferative or cytotoxic activities to tumor cells, proliferative effect on fibroblast cells, stimulatory effects on IL-6 production by melanoma cells and NF-κB activation in hepatoma cells. L NeuAc-TNFα and H NeuAc-TNFα exhibited reduced activities about 1/3 and 1/10 as compared to native TNFα in all the activities performed in vitro.  相似文献   
92.
Animal and yeast nucleolin function as global regulators of ribosome synthesis, and their expression is tightly linked to cell proliferation. Although Arabidopsis contains two genes for nucleolin, AtNuc-L1 is the predominant if not only form of the protein found in most tissues, and GFP-AtNuc-L1 fusion proteins were targeted to the nucleolus. Expression of AtNuc-L1 was strongly induced by sucrose or glucose but not by non-metabolizable mannitol or 2-deoxyglucose. Sucrose also caused enhanced expression of genes for subunits of C/D and H/ACA small nucleolar ribonucleoproteins, as well as a large number of genes for ribosomal proteins (RPs), suggesting that carbohydrate availability regulates de novo ribosome synthesis. In sugar-starved cells, induction of AtNuc-L1 occurred with 10 mM glucose, which seemed to be a prerequisite for resumption of growth. Disruption of AtNuc-L1 caused an increased steady-state level of pre-rRNA relative to mature 25S rRNA, and resulted in various phenotypes that overlap those reported for several RP gene mutants, including a reduced growth rate, prolonged lifetime, bushy growth, pointed leaf, and defective vascular patterns and pod development. These results suggest that the rate of ribosome synthesis in the meristem has a strong impact not only on the growth but also the structure of plants. The AtNuc-L1 disruptant exhibited significantly reduced sugar-induced expression of RP genes, suggesting that AtNuc-L1 is involved in the sugar-inducible expression of RP genes.  相似文献   
93.
Ethyl 4-[2-(6-methyl-3-pyridyloxy)hexyloxy]benzoate (1) and ethyl 4-(2-phenoxyhexyloxy)benzoate (2), which induce precocious metamorphosis in larvae of Bombyx mori, a clear sign of juvenile hormone (JH) deficiency, showed JH activity when topically applied to allatectomized 4th instar larvae of B. mori. Compounds 1 and 2 induced precocious metamorphosis with doses at which they were effective as JH agonists.  相似文献   
94.
Heterogeneity of the rDNA ITS region in Pythium helicoides and the phylogenetic relationship between P. helicoides and closely related species were investigated. In PCR-RFLP analysis of the rDNA ITS region of six P. helicoides isolates investigated, including the type culture, intraspecific variation was found at the HhaI site. The total length of fragments was longer than before cutting, indicating sequence heterogeneity within isolates. Digestion of the cloned rDNA ITS region derived from seven isolates with HhaI revealed polymorphisms among and within single zoospore isolates, and variability of the region was also present among the clones derived from the same isolate. To test whether the rDNA ITS region of closely related species and other regions in the genome of P. helicoides are also variable, the rDNA ITS region of P. ultimum and the cytochrome oxydase II (cox II) gene encoded in mitochondria were sequenced. P. ultimum had little variation in the rDNA ITS region. The cox II gene sequences of both species revealed only a low intraspecific variability and no intra-isolate variation. In the phylogenic tree based on the rDNA ITS sequences, all clones of P. helicoides formed one large clade that was distinct from the clades comprising morphologically similar species, such as P. oedochilum and P. ostracodes, and was closely related to P. chamaehyphon rather than the other species.  相似文献   
95.
Kusui  Yuka  Izuo  Naotaka  Uno  Kyosuke  Ge  Bin  Muramatsu  Shin-ichi  Nitta  Atsumi 《Neurochemical research》2022,47(9):2856-2864
Neurochemical Research - Methamphetamine (METH), the most widely distributed psychostimulant, aberrantly activates the reward system in the brain to induce addictive behaviors. The presynaptic...  相似文献   
96.
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.  相似文献   
97.
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.  相似文献   
98.
In the fission yeast Schizosaccharomyces pombe, galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. In S. pombe, the major in vitro α1,2-galactosyltransferase activity has been purified, the gma12(+) gene has been cloned, and three α-galactosyltransferase genes (gmh1(+)-gmh3(+)) have also been partially characterized. In this study, we found three additional uncharacterized genes with homology to gmh1(+) (gmh4(+)-gmh6(+)) in the fission yeast genome sequence. All possible single disruption mutants and the septuple disruption strain were constructed and characterized. The electrophoretic mobility of acid phosphatase prepared from gma12Δ, gmh2Δ, gmh3Δ and gmh6Δ mutants was higher than that from wild type, indicating that Gma12p, Gmh2p, Gmh3p and Gmh6p are required for the galactosylation of N-linked oligosaccharides. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides from each single mutant showed that Gma12p, Gmh2p and Gmh6p are involved in galactosylation of O-linked oligosaccharides. The septuple mutant exhibited similar drug and temperature sensitivity as a gms1Δ mutant that is incapable of galactosylation. Oligosaccharide structural analysis based on HPLC and methylation analysis revealed that the septuple mutant still contained oligosaccharides consisting of α1,3-linked Gal residues, indicating that an unknown α1,3-galactosyltransferase activity was still present in the septuple mutant.  相似文献   
99.
In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.  相似文献   
100.
We identify a new mammalian cohesin subunit, RAD21-like protein (RAD21L), with sequence similarity to RAD21 and REC8. RAD21L localizes along axial elements in early meiotic prophase, in a manner that is spatiotemporally different to either REC8 or RAD21. Remarkably, RAD21L and REC8 have symmetrical, mutually exclusive localization on the not-yet-synapsed homologues, implying that the cohesin patterning could provide a code for homologue recognition. RAD21 transiently localizes to axial elements after the dissociation of RAD21L and REC8 in late pachytene, a period of recombination repair. Further, we show that the removal of cohesins and synaptonemal complex during late meiotic prophase is promoted by Polo-like kinase 1, which is similar to the mitotic prophase pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号