首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1946篇
  免费   89篇
  2035篇
  2023年   3篇
  2022年   11篇
  2021年   21篇
  2020年   11篇
  2019年   20篇
  2018年   24篇
  2017年   23篇
  2016年   47篇
  2015年   68篇
  2014年   80篇
  2013年   108篇
  2012年   149篇
  2011年   146篇
  2010年   84篇
  2009年   81篇
  2008年   129篇
  2007年   166篇
  2006年   128篇
  2005年   145篇
  2004年   133篇
  2003年   125篇
  2002年   127篇
  2001年   13篇
  2000年   17篇
  1999年   21篇
  1998年   19篇
  1997年   14篇
  1996年   8篇
  1995年   14篇
  1994年   14篇
  1993年   10篇
  1992年   12篇
  1991年   10篇
  1990年   6篇
  1989年   11篇
  1988年   6篇
  1987年   8篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1971年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有2035条查询结果,搜索用时 15 毫秒
31.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.  相似文献   
32.
Heparan sulfate (HS) interacts with diverse heparin-binding growth factors and thereby regulates their bioactivities. These interactions depend on the structures characterized by the sulfation pattern and isomer of uronic acid residues. One of the biosynthetic modifications of HS, namely 6-O-sulfation, is catalyzed by three isoforms of HS6-O-sulfotransferase. We generated HS6ST-1- and/or HS6ST-2-deficient mice (6ST1-KO, 6ST2-KO, and double knock-out (dKO)) that exhibited different phenotypes. We examined the effects of HS 6-O-sulfation in heparin-binding growth factor signaling using fibroblasts derived from these mutant mice. Mouse embryonic fibroblasts (MEF) prepared from E14.5 dKO mice produced HS with little 6-O-sulfate, whereas 2-O-sulfation in HS from dKO-MEF (dKO-HS) was increased by 1.9-fold. HS6-O-sulfotransferase activity in the dKO-MEF was hardly detected, and HS2-O-sulfotransferase activity was 1.5-fold higher than that in wild type (WT)-MEFs. The response of dKO-MEFs to fibroblast growth factors (FGFs) was distinct from that of WT-MEFs; in dKO-MEFs, FGF-4- and FGF-2-dependent signalings were reduced to approximately 30 and 60% of WT-MEFs, respectively, and FGF-1-dependent signaling was moderately reduced compared with that of WT-MEFs but only at the lower FGF-1 concentrations. Analysis with a surface plasmon resonance biosensor demonstrated that the apparent affinity of dKO-HS for FGF-4 was markedly reduced and was also reduced for FGF-1. In contrast, the affinity of dKO-HS for FGF-2 was 2.5-fold higher than that of HS from WT-MEFs. Thus, 6-O-sulfate in HS may regulate the signalings of some of HB-GFs, including FGFs, by inducing different interactions between ligands and their receptors.  相似文献   
33.
34.
The N-terminal regions of AAA-ATPases (ATPase associated with various cellular activities) often contain a domain that defines the distinct functions of the enzymes, such as substrate specificity and subcellular localization. As described herein, we have determined the solution structure of an N-terminal unique domain isolated from nuclear valosin-containing protein (VCP)-like protein 2 (NVL2(UD)). NVL2(UD) contains three α helices with an organization resembling that of a winged helix motif, whereas a pair of β-strands is missing. The structure is unique and distinct from those of other known type II AAA-ATPases, such as VCP. Consequently, we identified nucleolin from a HeLa cell extract as a binding partner of this domain. Nucleolin contains a long (~300 amino acids) intrinsically unstructured region, followed by the four tandem RNA recognition motifs and the C-terminal glycine/arginine-rich domain. Binding analyses revealed that NVL2(UD) potentially binds to any of the combinations of two successive RNA binding domains in the presence of RNA. Furthermore, NVL2(UD) has a characteristic loop, in which the key basic residues RRKR are exposed to the solvent at the edge of the molecule. The mutation study showed that these residues are necessary and sufficient for nucleolin-RNA complex binding as well as nucleolar localization. Based on the observations presented above, we propose that NVL2 serves as an unfoldase for the nucleolin-RNA complex. As inferred from its RNA dependence and its ATPase activity, NVL2 might facilitate the dissociation and recycling of nucleolin, thereby promoting efficient ribosome biogenesis.  相似文献   
35.
The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti‐ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C‐terminal src kinase)‐binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent‐resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti‐ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over‐expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314‐phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314‐phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP‐43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.  相似文献   
36.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   
37.
The P1B-type heavy metal ATPases (HMAs) are diverse in terms of tissue distribution, subcellular localization, and metal specificity. Functional studies of HMAs have shown that these transporters can be divided into two subgroups based on their metal-substrate specificity: a copper (Cu)/silver (Ag) group and a zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) group. Studies on Arabidopsis thaliana and metal hyperaccumulator plants indicate that HMAs play an important role in the translocation or detoxification of Zn and Cd in plants. Rice possesses nine HMA genes, of which OsHMA1–OsHMA3 belong to the Zn/Co/Cd/Pb subgroup. OsHMA2 plays an important role in root-to-shoot translocation of Zn and Cd, and participates in Zn and Cd transport to developing seeds in rice. OsHMA3 transports Cd and plays a role in the sequestration of Cd into vacuoles in root cells. Modification of the expression of these genes might be an effective approach for reducing the Cd concentration in rice grains.  相似文献   
38.
We developed a simple method for freezing anchorage-dependent cells, including primary cultured rat liver parenchymal cells, without detaching the cells from the culture dish. The method consists of preculture of the cells to confluence, changing the growth medium to a conventional freezing medium, packaging in a container, and storage at –80°C. After thawing and changing the freezing medium to regular growth medium, cell growth was nearly identical to that of cells freshly seeded into a new dish.  相似文献   
39.

Background

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease.

Design

Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated IM on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology.

Results

All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence.

Conclusions

These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated.  相似文献   
40.
A sandwich enzyme-linked immunosorbent assay using H-subunit-rich canine heart ferritin as a standard has been developed for measuring canine serum ferritin which is H-subunit-rich. Serum ferritin concentrations in 51 normal dogs ranged from 143 to 1766 ng ml–1, with a mean value of 479±286 (SD) ng ml–1. Serum ferritin iron concentrations as determined by an immunoprecipitation technique ranged from 30.4 to 115.9 ng ml–1 in 15 normal dogs with serum ferritin protein levels of 298 to 959 ng ml–1. There was a significant linear correlation between the serum ferritin iron and protein levels (r=0.9441, P<0.001), and the mean iron/protein ratio of serum ferritin was 0.112±0.017. When canine sera were incubated with concanavalin A-Sepharose 4B, we observed the apparent binding of serum ferritin to concanavalin A. However, ferritin obtained by heat-treating the sera at pH 4.8 to remove the ferritin-binding proteins did not bind to the lectin. These results suggest that canine serum ferritin contains a considerable amount of iron but no concanavalin A-binding G subunit present in human serum ferritin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号