首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2077篇
  免费   93篇
  2023年   2篇
  2022年   9篇
  2021年   22篇
  2020年   11篇
  2019年   21篇
  2018年   26篇
  2017年   24篇
  2016年   49篇
  2015年   70篇
  2014年   83篇
  2013年   114篇
  2012年   155篇
  2011年   149篇
  2010年   92篇
  2009年   87篇
  2008年   137篇
  2007年   178篇
  2006年   144篇
  2005年   157篇
  2004年   138篇
  2003年   129篇
  2002年   134篇
  2001年   20篇
  2000年   21篇
  1999年   25篇
  1998年   19篇
  1997年   15篇
  1996年   8篇
  1995年   14篇
  1994年   14篇
  1993年   10篇
  1992年   16篇
  1991年   11篇
  1990年   6篇
  1989年   12篇
  1988年   6篇
  1987年   11篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有2170条查询结果,搜索用时 31 毫秒
941.
Macrophages are essential in cleaning up apoptotic debris during follicular atresia. However, the key factors of this process are still unclear. In the present study, we evaluated CD44 mRNA, CD44 protein, and CD44 antigen glycosylation on macrophages during follicular atresia in the pig. Atresia was classified into five stages: stage I, healthy follicles; stage II, early atretic follicles having apoptotic granulosa cells with an unclear basement membrane; stage III, progressing atretic follicles having apoptotic granulosa cells completely diffused from the basement membrane; stage IV, late atretic follicles with increasing lysosomal activity; and stage V, disintegrated atretic follicles having collapsed theca cells and strong lysosomal activity. Immunohistological analysis showed that macrophages expressing CD44 invaded the inside of stage III follicles, accompanied by a collapse of basement membrane. Semiquantitative RT-PCR showed that only mRNA of the CD44 standard isoform (CD44s) was present in inner cells of follicles, and not any CD44 variant isoform (CD44v) mRNAs. The amount of CD44s mRNA was increased at stage III. Western blot and lectin blot analyses showed that CD44 was markedly expressed at stage III and glycosylated with polylactosamine at the same time. After macrophages invaded atretic follicles at stages III-V, the CD44 expressed on macrophages was glycosylated with polylactosamine. The lysosomal activity began to increase at stage IV, and reached the highest level at stage V. Increased CD44s protein and posttranslational modification of CD44 with polylactosamine on macrophages from stage III could be involved in the cleaning up apoptotic granulosa cells.  相似文献   
942.
The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) is used as a vector in many gene therapy studies. Wild-type AcMNPV infects many mammalian cell types in vitro, but does not replicate. We investigated the dynamics of AcMNPV genomic DNA in infected mammalian cells and used flow cytometric analysis to demonstrate that recombinant baculovirus containing a cytomegalovirus immediate early promoter/enhancer with green fluorescent protein (GFP) expressed high levels of GFP in Huh-7 cells, but not B16, Raw264.7, or YAC-1 cells. The addition of butyrate, a deacetylase inhibitor, markedly enhanced the percentage of GFP-expressing Huh-7 and B16 cells, but not Raw264.7 and YAC-1 cells. The addition of 5-aza-2'-deoxycytidine, a DNA methylation inhibitor, had no enhancing effect. Polymerase chain reaction analysis using AcMNPV-gp64-specific primers indicated that AcMNPV infected not only Huh-7 and B16 cells, but also Raw264.7 and YAC-1 cells in vitro. The genomic DNA was detected in Huh-7 and B16 cells 96 h after infection. Genomic AcMNPV DNA in YAC-1 cells was not transported to the nucleus. Luciferase assay indicated that AcMNPV p35 gene mRNA and p35 promoter activity were clearly expressed only in Huh-7 and B16 cells. These results suggest that viral genomic DNA expression is restricted by different host cell factors, such as degradation, deacetylation, and inhibition of nuclear transport, depending on the mammalian cell type.  相似文献   
943.
To understand how the properties of ameloblasts are spatiotemporally regulated during amelogenesis, two primary cultures of ameloblasts in different stages of differentiation were established from mouse enamel epithelium. Mouse primary ameloblasts (MPAs) prepared from immature enamel epithelium (MPA-I) could proliferate, whereas those from mature enamel epithelium (MPA-M) could not. MPA-M but not MPA-I caused apoptosis during culture. The mRNA expression of amelogenin, a marker of immature ameloblasts, was down-regulated, and that of enamel matrix serine proteiase-1, a marker of mature ameloblasts, was induced in MPA-I during culture. Using green fluorescence protein as a reporter, a visualized reporter system was established to analyze the promoter activity of the amelogenin gene. The region between -1102bp and -261bp was required for the reporter expression in MPA-I. These results suggest that MPAs are valuable in vitro models for investigation of ameloblast biology, and that the visualized system is useful for promoter analysis in MPAs.  相似文献   
944.
945.
Use of cyclooxygenase (COX) inhibitors to delay preterm birth is complicated by in utero constriction of the ductus arteriosus and delayed postnatal closure. Delayed postnatal closure has been attributed to loss of vasa vasorum flow and ductus wall ischemia resulting from constriction in utero. We used the murine ductus (which does not depend on vasa vasorum flow) to determine whether delayed postnatal closure may be because of mechanisms independent of in utero constriction. Acute inhibition of both COX isoforms constricted the fetal ductus on days 18 and 19 (term) but not earlier in gestation; COX-2 inhibition constricted the fetal ductus more than COX-1 inhibition. In contrast, mice exposed to prolonged inhibition of COX-1, COX-2, or both COX isoforms (starting on day 15, when the ductus does not respond to the inhibitors) had no contractile response to the inhibitors on days 18 or 19. Newborn mice closed their ductus within 4 h of birth. Prolonged COX inhibition on days 11-14 of gestation had no effect on newborn ductal closure; however, prolonged COX inhibition on days 15-19 resulted in delayed ductus closure despite exposure to 80% oxygen after birth. Similarly, targeted deletion of COX-2 alone, or COX-1/COX-2 together, impaired postnatal ductus closure. Nitric oxide inhibition did not prevent the delay in ductus closure. These data show that impaired postnatal ductus closure is not the result of in utero ductus constriction or upregulation of nitric oxide synthesis. They are consistent with a novel role for prostaglandins in ductus arteriosus contractile development.  相似文献   
946.
Morimura N  Inoue T  Katayama K  Aruga J 《Gene》2006,380(2):72-83
Leucine-rich repeat and fibronectin III domain-containing (Lrfn) has five members in mouse and human (Lrfn1, Lrfn2, Lrfn3, Lrfn4, Lrfn5), and homologues in other vertebrates. Lrfn proteins share leucine-rich repeat (LRR)–immunoglobulin-like (Ig)–fibronectin type III (Fn)–transmembrane domain structure, which is also found in LRR–Ig–Fn superfamily proteins. Mouse Lrfn genes were expressed at adult stage predominantly in the brain. In the course of development, expression of Lrfn1, Lrfn3, and Lrfn4 started from immature neural cells, whereas that of Lrfn2 and Lrfn5 was limited to mature ones. Lrfn1–5 commonly encode glycoproteins spanning the plasma membrane, with their N-terminus located on the extracellular side. C-termini of Lrfn1, Lrfn2 and Lrfn4 were bound by PDZ domains of postsynaptic protein PSD95, re-distributing PSD95 to cell periphery where the Lrfn proteins were detected. These results suggest that Lrfn proteins are neuronal components with a role in the developing or mature vertebrate nervous system.  相似文献   
947.
In order to prepare a series of N-acetylheparosan (NAH)-related oligosaccharides, bacterial NAH produced in Escherichia coli strain K5 was partially depolymerized with heparitinase I into a mixture of even-numbered NAH oligosaccharides, having an unsaturated uronic acid (DeltaUA) at the non-reducing end. A mixture of odd-numbered oligosaccharides was derived by removing this DeltaUA in the aforementioned mixture by a 'trimming' reaction using mercury(II) acetate. Each oligosaccharide mixture was subjected to gel-filtration chromatography to generate a series of size-uniform NAH oligosaccharides of satisfactory purity (assessed by analytical anion-exchange HPLC), and their structures were identified by MALDITOF-MS, ESIMS, and 1H NMR analysis. As a result, a microscale preparation of a series of both even- and odd-numbered NAH oligosaccharides was achieved for the first time. The developed procedure is simple and systematic, and thus, should be valuable for providing not only research tools for heparin/heparan sulfate-specific enzymes and their binding proteins, but also precursor substrates with medical applications.  相似文献   
948.
Morphine modulates monocyte-macrophage conversion phase   总被引:2,自引:0,他引:2  
Monocyte migration and their activation into the macrophage phenotype play a role in the modulation of tissue injury. We studied the effect of morphine on the monocyte-macrophage conversion phase (MMCP). Phorbol 12-myristate 13-acetate (PMA) activated THP-1 cells and promoted their adhesion to the substrate. Morphine inhibited PMA-induced MMCP. However, opiate receptor antagonists attenuated this effect of morphine. Interestingly, PMA as well as morphine-stimulated superoxide production by monocytes. Superoxide dismutase (SOD) not only inhibited PMA-mediated MMCP but also attenuated the inhibitory effect of morphine. PMA not only enhanced adhesion of monocytes to a filter but also promoted their migration. These findings suggest that the PMA-induced macrophage phenotype conversion may be accelerating their migration; whereas, morphine may be preventing the migration of monocytes by inhibiting MMCP.  相似文献   
949.
Bispecific antibodies (bsAbs) have the potential to extend binding selectivity, increase avidity and exert potent cytotoxicity due to the combination of dual specificities. scFv2-Fc type of single-gene-encoded bispecific antibody, composed of two different single-chain Fvs and an Fc, has been reported to be capable of binding to different antigens. The aim of this study was to determine the effect of fucose removal on effector functions of scFv2-Fc since fucose depletion from oligosaccharide of human IgG1 and scFv-Fc results in significant enhancement of ADCC. We generated novel single-gene-encoded bsAb with dual specificity against tumor associated glycoprotein (TAG)-72 and MUC1 mucin as fucose-negative scFv2-Fc from alpha-1,6-fucosyltransferase knock-out CHO cells and a highly fucosylated scFv2-Fc comparator from parental CHO cells. Expression, assembly and the antigen-binding activity of the scFv2-Fc were not influenced by removal of fucose. The fucose negative scFv2-Fc bound with higher avidity to FcgammaRIIIa and enhanced ADCC compared to the highly fucosylated scFv2-Fc. These results demonstrate that ADCC-enhancement by removal of fucose is effective in not only whole IgG1 and scFv-Fc, but also scFv2-Fc targeting two different antigens, and thus increases the potential of fucose-negative scFv2-Fcs as novel therapeutic candidates.  相似文献   
950.
In muscle and adipose cells, the insulin-responsive aminopeptidase (IRAP) is localized to intracellular storage sites and undergoes insulin-dependent redistribution to the cell surface. Following expression, the newly synthesized IRAP protein traffics to the perinuclear insulin-sensitive compartment and acquires insulin sensitivity 6-9 h following biosynthesis. Knockdown of GGA1 by RNA interference prevented IRAP from entering, but not exiting, the insulin-responsive compartment. Mutation of the dileucine motif at positions 76 and 77 (EGFP-IRAP/AA(76,77)), but not the dileucine motif at positions 53 and 54, resulted in the rapid default of the reporter to the cell surface beginning at 3 h following biosynthesis. Alanine substitution of 9 residues amino- or carboxyl-terminal to LL(76,77) did not perturb basal intracellular sequestration or abrogate insulin-stimulated IRAP translocation. Moreover, a dominant interfering GGA mutant (VHS-GAT) potently inhibited insulin-stimulated translocation of EGFP-IRAP/WT but did not block the constitutive exocytotic trafficking of EGFP-IRAP/AA(76,77). In addition, the EGFP-IRAP/WT and EGFP-IRAP/AA(76,77) constructs occupied morphologically distinct tubulovesicular compartments in the perinuclear region. Taken together, these data indicate that LL(76,77) functions during the GGA-dependent sorting of newly made IRAP into the insulin-responsive storage compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号