首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2173篇
  免费   107篇
  2022年   9篇
  2021年   23篇
  2020年   11篇
  2019年   21篇
  2018年   28篇
  2017年   25篇
  2016年   49篇
  2015年   70篇
  2014年   81篇
  2013年   109篇
  2012年   155篇
  2011年   158篇
  2010年   87篇
  2009年   87篇
  2008年   137篇
  2007年   178篇
  2006年   139篇
  2005年   156篇
  2004年   150篇
  2003年   143篇
  2002年   140篇
  2001年   27篇
  2000年   26篇
  1999年   26篇
  1998年   21篇
  1997年   19篇
  1996年   10篇
  1995年   15篇
  1994年   16篇
  1993年   12篇
  1992年   22篇
  1991年   13篇
  1990年   9篇
  1989年   14篇
  1988年   6篇
  1987年   15篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2280条查询结果,搜索用时 15 毫秒
81.
Plasma concentrations of free fatty acids are increased in metabolic syndrome, and the increased fatty acids may cause cellular damage via the induction of oxidative stress. The present study was designed to determine whether the increase in fatty acids can modify the free sulfhydryl group in position 34 of albumin (Cys34) and enhance the redox-cycling activity of the copper-albumin complex in high-fat diet-induced obese mice. The mice were fed with commercial normal diet or high-fat diet and water ad libitum for 3 months. The high-fat diet-fed mice developed obesity, hyperlipemia, and hyperglycemia. The plasma fatty acid/albumin ratio also significantly increased in high-fat diet-fed mice. The increased fatty acid/albumin ratio was associated with conformational changes in albumin and the oxidation of sulfhydryl groups. Moreover, an ascorbic acid radical, an index of redox-cycling activity of the copper-albumin complex, was detected only in the plasma from obese mice, whereas the plasma concentrations of ascorbic acid were not altered. Plasma thiobarbituric acid reactive substances were significantly increased in the high-fat diet group. These results indicate that the increased plasma fatty acids in the high-fat diet group resulted in the activated redox cycling of the copper-albumin complex and excessive lipid peroxidation.  相似文献   
82.
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.  相似文献   
83.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
84.
Glutamate uptake by envelope vesicles of Halobacterium halobium was measured. Previous authors showed that the glutamate uptake needs the illumination as well as Na+ gradient across the membrane. The latter is considered to be the driving force for the uptake. No satisfactory explanation for the necessity of the illumination has not been given. We found that in the absence of Cl- in the medium, only Na+ gradient was enough to induce the glutamate uptake, i.e. no illumination was needed. Glutamate uptake was measured with various strains of H. halobium. We found that the envelope vesicles prepared from strains containing no bacteriorhodopsin showed the glutamate uptake in the dark and in the presence of Cl- in the medium provided only that Na+ gradient is imposed.  相似文献   
85.
Human papillomavirus type 16 (HPV16) E1 and E6 proteins are produced from mRNAs with retained introns, but it has been unclear how these mRNAs are generated. Here, we report that hnRNP D act as a splicing inhibitor of HPV16 E1/E2- and E6/E7-mRNAs thereby generating intron-containing E1- and E6-mRNAs, respectively. N- and C-termini of hnRNP D contributed to HPV16 mRNA splicing control differently. HnRNP D interacted with the components of splicing machinery and with HPV16 RNA to exert its inhibitory function. As a result, the cytoplasmic levels of intron-retained HPV16 mRNAs were increased in the presence of hnRNP D. Association of hnRNP D with HPV16 mRNAs in the cytoplasm was observed, and this may correlate with unexpected inhibition of HPV16 E1- and E6-mRNA translation. Notably, hnRNP D40 interacted with HPV16 mRNAs in an HPV16-driven tonsillar cancer cell line and in HPV16-immortalized human keratinocytes. Furthermore, knockdown of hnRNP D in HPV16-driven cervical cancer cells enhanced production of the HPV16 E7 oncoprotein. Our results suggest that hnRNP D plays significant roles in the regulation of HPV gene expression and HPV-associated cancer development.  相似文献   
86.
Four ferredoxin (Fd) fractions, namely, FdA-D were purified from the green sulfur bacterium Chlorobium tepidum. Their absorption spectra are typical of 2[4Fe-4S] cluster type Fds with peaks at about 385 and 280 nm and a shoulder at about 305 nm. The A(385)/A(280) ratios of the purified Fds were 0.76-0.80. Analysis of the N-terminal amino acid sequences of these Fds (15-25 residues) revealed that those of FdA and FdB completely agree with those deduced from the genes, fdx3 and fdx2, respectively, found in this bacterium (Chung and Bryant, personal communication). The N-terminal amino acid sequences of FdC and FdD (15 residues) were identical, and agree with that deduced from the gene fdx1 (Chung and Bryant, personal communication). The A(385) values of these Fds were unchanged when they were stored for a month at -80 degrees C under aerobic conditions and decreased by 10-15% when they were stored for 6 days at 4 degrees C under aerobic conditions, indicating that they are not extremely unstable. In the presence of Fd-NADP(+) reductase from spinach, and a purified reaction center (RC) preparation from C. tepidum composed of five kinds of polypeptides, these Fds supported the photoreduction of NADP(+) at room temperature with the following K(m) and V(max) (in micromol NADP(+) micromol BChl a(-1) h(-1)): FdA, 2.0 microm and 258; FdB, 0.49 microM and 304; FdC, 1.13 microM and 226; FdD, 0.5 microM and 242; spinach Fd, 0.54 microM and 183. The V(max) value of FdB was more than twice that previously reported for purified RC preparations from green sulfur bacteria.  相似文献   
87.
Phoborhodopsin (pR or sensory rhodopsin II, sRII) is a photoreceptor of the negative phototaxis of Halobacterium salinarum, and pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. The photocycle of ppR is essentially as follows: ppR(498) ppRK(540) ppRKL(512) ppRL(488) ppRM(390) ppRO(560) ppR (numbers in parenthesis denote the maximum absorbance). The photocycle is very similar to that of bacteriorhodopsin, but the rate of initial pigment recovery is about two-orders of magnitude slower. By low-temperature spectroscopy, two K-intermediates were found but the L intermediate was not detected. The lack of L indicates extraordinary stability of K at low temperature. ppRM is photoactive similar to M of bR. The ground state ppR contains only all-trans retinal whereas ppRM and ppRO contain 13-cis and all-trans, respectively. ppR has the ability of lightinduced proton transport from the inside to the outside. Proton uptake occurs at the formation of ppRO and the release at its decay. ppR associates with its transducer and this complex transmits a signal to the cytoplasm. The proton transport ability is lost when the complex forms, but the proton uptake and release still occur, suggesting that the proton movement is non-electrogenic (release and uptake occur from the same side). The stoichiometry of the complex between ppR and the transducer is 1 : 1. ppR or pR has absorption maximum at 500 nm, which is blue-shifted from those of other archaeal rhodopsins. The molecular mechanism of this color regulation is not yet solved.  相似文献   
88.
89.
90.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号