首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1986篇
  免费   95篇
  2023年   2篇
  2022年   11篇
  2021年   25篇
  2020年   11篇
  2019年   21篇
  2018年   25篇
  2017年   23篇
  2016年   48篇
  2015年   71篇
  2014年   81篇
  2013年   109篇
  2012年   151篇
  2011年   150篇
  2010年   86篇
  2009年   81篇
  2008年   131篇
  2007年   169篇
  2006年   132篇
  2005年   146篇
  2004年   134篇
  2003年   126篇
  2002年   130篇
  2001年   14篇
  2000年   18篇
  1999年   21篇
  1998年   19篇
  1997年   14篇
  1996年   8篇
  1995年   15篇
  1994年   15篇
  1993年   10篇
  1992年   12篇
  1991年   11篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   9篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1971年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有2081条查询结果,搜索用时 31 毫秒
141.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   
142.
Cardiac and skeletal myosin assembled in the muscle lattice power contraction by transducing ATP free energy into the mechanical work of moving actin. Myosin catalytic/lever-arm domains comprise the transduction/mechanical coupling machinery that move actin by lever-arm rotation. In vivo, myosin is crowded and constrained by the fiber lattice as side chains are mutated and otherwise modified under normal, diseased, or aging conditions that collectively define the native myosin environment. Single-myosin detection uniquely defines bottom-up characterization of myosin functionality. The marriage of in vivo and single-myosin detection to study zebrafish embryo models of human muscle disease is a multiscaled technology that allows one-to-one registration of a selected myosin molecular alteration with muscle filament-sarcomere-cell-fiber-tissue-organ- and organism level phenotypes. In vivo single-myosin lever-arm orientation was observed at superresolution using a photoactivatable-green-fluorescent-protein (PAGFP)-tagged myosin light chain expressed in zebrafish skeletal muscle. By simultaneous observation of multiphoton excitation fluorescence emission and second harmonic generation from myosin, we demonstrated tag specificity for the lever arm. Single-molecule detection used highly inclined parallel beam illumination and was verified by quantized photoactivation and photobleaching. Single-molecule emission patterns from relaxed muscle in vivo provided extensive superresolved dipole orientation constraints that were modeled using docking scenarios generated for the myosin (S1) and GFP crystal structures. The dipole orientation data provided sufficient constraints to estimate S1/GFP coordination. The S1/GFP coordination in vivo is rigid and the lever-arm orientation distribution is well-ordered in relaxed muscle. For comparison, single myosins in relaxed permeabilized porcine papillary muscle fibers indicated slightly differently oriented lever arms and rigid S1/GFP coordination. Lever arms in both muscles indicated one preferred spherical polar orientation and widely distributed azimuthal orientations relative to the fiber symmetry axis. Cardiac myosin is more radially displaced from the fiber axis. Probe rigidity implies the PAGFP tag reliably indicates cross-bridge orientation in situ and in vivo.  相似文献   
143.
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design.  相似文献   
144.
Phosphatidylinositol (PI), an important constituent of membranes, contains stearic acid as the major fatty acid at the sn-1 position. This fatty acid is thought to be incorporated into PI through fatty acid remodeling by sequential deacylation and reacylation. However, the genes responsible for the reaction are unknown, and consequently, the physiological significance of the sn-1 fatty acid remains to be elucidated. Here, we identified acl-8, -9, and -10, which are closely related to each other, and ipla-1 as strong candidates for genes involved in fatty acid remodeling at the sn-1 position of PI. In both ipla-1 mutants and acl-8 acl-9 acl-10 triple mutants of Caenorhabditis elegans, the stearic acid content of PI is reduced, and asymmetric division of stem cell-like epithelial cells is defective. The defects in asymmetric division of these mutants are suppressed by a mutation of the same genes involved in intracellular retrograde transport, suggesting that ipla-1 and acl genes act in the same pathway. IPLA-1 and ACL-10 have phospholipase A1 and acyltransferase activity, respectively, both of which recognize the sn-1 position of PI as their substrate. We propose that the sn-1 fatty acid of PI is determined by ipla-1 and acl-8, -9, -10 and crucial for asymmetric divisions.  相似文献   
145.
When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe?Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.  相似文献   
146.
147.
We recently identified a novel 40-amino acid neuropeptide designated manserin from the rat brain (Yajima in NeuroReport 15: 1755–1759, 2004). Manserin is highly expressed in pituitary and hypothalamic nuclei, which suggests that it plays a role in the endocrine system. In this study, we employed immunohistochemical methods to investigate the presence of manserin in rat adrenal glands, as well as its regulation by physical stress. Immunohistochemical analysis using anti-manserin antibody showed that manserin is present in the rat adrenal medulla but not in the cortex. When the colocalization of manserin and phenylethanolamine N-methyltransferase (PNMT), an epinephrine-synthesizing enzyme, was examined, virtually all PNMT-positive cells expressed manserin. Interestingly, the immunoreactivity of manserin was significantly increased when the rats were exposed to water-immersion restraint stress. These results demonstrate for the first time that adrenal manserin, a novel neuropeptide, may have a potential physiological role under stress-inducing conditions.  相似文献   
148.
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
149.
Most Gluconobacter species produce and accumulate 2-keto-d-gluconate (2KGA) and 5KGA simultaneously from d-glucose via GA in culture medium. 2KGA is produced by membrane-bound flavin adenine dinucleotide-containing GA 2-dehydrogenase (FAD-GADH). FAD-GADH was purified from "Gluconobacter dioxyacetonicus" IFO 3271, and N-terminal sequences of the three subunits were analyzed. PCR primers were designed from the N-terminal sequences, and part of the FAD-GADH genes was cloned as a PCR product. Using this PCR product, gene fragments containing whole FAD-GADH genes were obtained, and finally the nucleotide sequence of 9,696 bp was determined. The cloned sequence had three open reading frames (ORFs), gndS, gndL, and gndC, corresponding to small, large, and cytochrome c subunits of FAD-GADH, respectively. Seven other ORFs were also found, one of which showed identity to glucono-delta-lactonase, which might be involved directly in 2KGA production. Three mutant strains defective in either gndL or sldA (the gene responsible for 5KGA production) or both were constructed. Ferricyanide-reductase activity with GA in the membrane fraction of the gndL-defective strain decreased by about 60% of that of the wild-type strain, while in the sldA-defective strain, activity with GA did not decrease and activities with glycerol, d-arabitol, and d-sorbitol disappeared. Unexpectedly, the strain defective in both gndL and sldA (double mutant) still showed activity with GA. Moreover, 2KGA production was still observed in gndL and double mutant strains. 5KGA production was not observed at all in sldA and double mutant strains. Thus, it seems that "G. dioxyacetonicus" IFO 3271 has another membrane-bound enzyme that reacts with GA, producing 2KGA.  相似文献   
150.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号