首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2043篇
  免费   94篇
  2137篇
  2023年   4篇
  2022年   12篇
  2021年   23篇
  2020年   11篇
  2019年   20篇
  2018年   24篇
  2017年   25篇
  2016年   49篇
  2015年   72篇
  2014年   85篇
  2013年   111篇
  2012年   157篇
  2011年   152篇
  2010年   86篇
  2009年   86篇
  2008年   135篇
  2007年   172篇
  2006年   132篇
  2005年   145篇
  2004年   145篇
  2003年   126篇
  2002年   127篇
  2001年   15篇
  2000年   17篇
  1999年   21篇
  1998年   20篇
  1997年   14篇
  1996年   8篇
  1995年   14篇
  1994年   14篇
  1993年   11篇
  1992年   12篇
  1991年   13篇
  1990年   6篇
  1989年   10篇
  1988年   5篇
  1987年   8篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1978年   4篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1968年   4篇
排序方式: 共有2137条查询结果,搜索用时 0 毫秒
101.
Escherichia blattae non-specific acid phosphatase (EB-NSAP) possesses a pyrophosphate-nucleoside phosphotransferase activity, which is C-5'-position selective. Current mutational and structural data were used to generate a mutant EB-NSAP for a potential industrial application as an effective and economical protein catalyst in synthesizing nucleotides from nucleosides. First, Gly74 and Ile153 were replaced by Asp and Thr, respectively, since the corresponding replacements in the homologous enzyme from Morganella morganii reduced the K(m) value for inosine and thus increased the productivity of 5'-IMP. We determined the crystal structure of G74D/I153T, which has a reduced K(m) value for inosine, as expected. The tertiary structure of G74D/I153T was virtually identical to that of the wild-type. In addition, neither of the introduced side chains of Asp74 and Thr153 is directly involved in the interaction with inosine in a hypothetical binding mode of inosine to EB-NSAP, although both residues are situated near a potential inosine-binding site. These findings suggested that a slight structural change caused by an amino acid replacement around the potential inosine-binding site could significantly reduce the K(m) value. Prompted by this hypothesis, we designed several mutations and introduced them to G74D/I153T, to decrease the K(m) value further. This strategy produced a S72F/G74D/I153T mutant with a 5.4-fold lower K(m) value and a 2.7-fold higher V(max) value as compared to the wild-type EB-NSAP.  相似文献   
102.
Sleep and Biological Rhythms - Chronic sleep restriction adversely effects cognitive performance and mood, resulting in accidents and economic loss. We examined the effects of three nights of sleep...  相似文献   
103.
104.
105.
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis.  相似文献   
106.
The RNAs for the storage proteins of rice ( Oryza sativa ), prolamines and glutelins, which are stored as inclusions in the lumen of the endoplasmic reticulum (ER) and storage vacuoles, respectively, are targeted by specific cis -localization elements to distinct subdomains of the cortical ER. Glutelin RNA has one or more cis -localization elements (zip codes) at the 3' end of the RNA, whereas prolamine has two cis -elements; one located in the 5' end of the coding sequence and a second residing in the 3'-untranslated region (UTR). We had earlier demonstrated that the RNAs for the maize zeins ('prolamine' class) are localized to the spherical protein body ER (PB-ER) in developing maize endosperm. As the PB-ER localization of the 10-kDa δ-zein RNA is maintained in developing rice seeds, we determined the number and proximate location of their cis -localization elements by expressing GFP fusions containing various zein RNA sequences in transgenic rice and analyzing their spatial distribution on the cortical ER by in situ RT-PCR and confocal microscopy. Four putative cis -localization elements were identified; three in the coding sequences and one in the 3'-UTR. Two of these zip codes are required for restricted localization to the PB-ER. Using RNA targeting determinants we show, by mis-targeting the storage protein RNAs from their normal destination on the cortical ER, that the coded proteins are redirected from their normal site of deposition. Targeting of RNA to distinct cortical ER subdomains may be the underlying basis for the variable use of the ER lumen or storage vacuole as the final storage deposition site of storage proteins among flowering plant species.  相似文献   
107.
Although charophycean algae form a relevant monophyly with embryophytes and hence occupy a fundamental place in the development of Streptophyta, no tools for genetic transformation in these organisms have been developed. Here we present the first stable nuclear transformation system for the unicellular Zygnematales, the Closterium peracerosum-strigosum-littorale complex (C. psl complex), which is one of the most useful organisms for experimental research on charophycean algae. When a vector, pSA106, containing the dominant selectable marker ble (phleomycin-resistant) gene and a reporter cgfp (Chlamydomonas-adapted green fluorescent protein) gene was introduced into cells via particle bombardment, a total of 19 phleomycin-resistant cells were obtained in the presence of a low concentration of phleomycin. Six isogenic strains isolated using conditioned medium showed consecutive cgfp expression and long-term stability for phleomycin resistance. DNA analyses verified single or tandem/redundant integration of ~10 copies of pSA106 into the C. psl complex genome. We also constructed an overexpression vector, pSA1102, and then integrated a CpPI gene encoding minus-specific sex pheromone into pSA1102. Ectopic overexpression of CpPI and the pheromonal function were confirmed when the vector pSA1102_CpPI was introduced into mt(+) cells. The present efficient transformation system for the C. psl complex should provide not only a basis for molecular investigation of Closterium but also an insight into important processes in early development and evolution of Streptophyta.  相似文献   
108.
Human α(1)-acid glycoprotein (hAGP) in serum functions as a carrier of basic drugs. In most individuals, hAGP exists as a mixture of two genetic variants, the F1*S and A variants, which bind drugs with different selectivities. We prepared a mutant of the A variant, C149R, and showed that its drug-binding properties were indistinguishable from those of the wild type. In this study, we determined the crystal structures of this mutant hAGP alone and complexed with disopyramide (DSP), amitriptyline (AMT), and the nonspecific drug chlorpromazine (CPZ). The crystal structures revealed that the drug-binding pocket on the A variant is located within an eight-stranded β-barrel, similar to that found in the F1*S variant and other lipocalin family proteins. However, the binding region of the A variant is narrower than that of the F1*S variant. In the crystal structures of complexes with DSP and AMT, the two aromatic rings of each drug interact with Phe-49 and Phe-112 at the bottom of the binding pocket. Although the structure of CPZ is similar to those of DSP and AMT, its fused aromatic ring system, which is extended in length by the addition of a chlorine atom, appears to dictate an alternative mode of binding, which explains its nonselective binding to the F1*S and A variant hAGPs. Modeling experiments based on the co-crystal structures suggest that, in complexes of DSP, AMT, or CPZ with the F1*S variant, Phe-114 sterically hinders interactions with DSP and AMT, but not CPZ.  相似文献   
109.
A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1–geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1–geminin binding. Using this system, we found that coenzyme Q10 (CoQ10) can inhibit Cdt1–geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ10, having a longer isoprenoid chain, was the strongest inhibitor of Cdt1–geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 μM. Surface plasmon resonance analysis demonstrated that CoQ10 bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ10 had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ10 inhibits Cdt1–geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ10 was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ10 could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1–geminin binding. The application of inhibitors for the formation of Cdt1–geminin complex is discussed.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号