首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2644篇
  免费   157篇
  2801篇
  2022年   14篇
  2021年   26篇
  2020年   12篇
  2019年   26篇
  2018年   32篇
  2017年   28篇
  2016年   55篇
  2015年   74篇
  2014年   98篇
  2013年   131篇
  2012年   171篇
  2011年   176篇
  2010年   98篇
  2009年   94篇
  2008年   145篇
  2007年   193篇
  2006年   149篇
  2005年   171篇
  2004年   158篇
  2003年   152篇
  2002年   160篇
  2001年   32篇
  2000年   44篇
  1999年   39篇
  1998年   33篇
  1997年   26篇
  1996年   19篇
  1995年   21篇
  1994年   21篇
  1993年   26篇
  1992年   30篇
  1991年   35篇
  1990年   26篇
  1989年   26篇
  1988年   20篇
  1987年   22篇
  1986年   21篇
  1985年   20篇
  1984年   26篇
  1983年   15篇
  1982年   19篇
  1981年   12篇
  1980年   10篇
  1979年   7篇
  1978年   10篇
  1975年   10篇
  1974年   12篇
  1973年   8篇
  1969年   6篇
  1968年   5篇
排序方式: 共有2801条查询结果,搜索用时 15 毫秒
41.
Artificial mutations of Gyrase A protein (GyrA) in Escherichia coli by site-directed mutagenesis were generated to analyze quinolone-resistant mechanisms. By genetic analysis of gyrA genes in a gyrA temperature sensitive (Ts) background, exchange of Ser at the NH2-terminal 83rd position of GyrA to Trp, Leu, Phe, Tyr, Ala, Val, and Ile caused bacterial resistance to the quinolones, while exchange to Gly, Asn, Lys, Arg and Asp did not confer resistance. These results indicate that it is the most important for the 83rd amino acid residue to be hydrophobic in expressing the phenotype of resistance to the quinolones. These findings also suggest that the hydroxyl group of Ser would not play a major role in the quinolone-gyrase interaction and Ser83 would not interact directly with other amino acid residues.  相似文献   
42.
The nitrogen source utilization by Fagus crenata distributed on soils with different forms of inorganic nitrogen in a cool-temperate deciduous forest in central Japan was determined by measuring foliar 15N. Two soil habitat types along a slope were delineated based on nitrogen transformation patterns, i.e., soils with high net nitrification rates and with no or low net nitrification, respectively. Despite differences in soil types, the study species, F. crenata, was distributed along the entire slope. The foliar 15N value of F. crenata from the lower slope area was significantly lower than that from the upper slope. Given the finding of a previous study that the 15N of NO3 was lower than that of NH4+, our results indicate that reliance on NO3 as a nitrogen source was greater in the lower slope area than in the upper slope area. Differences in the values of foliar 15N were about 1, which is far less than the 10 15N value of soil inorganic N reported in the previous study. This discrepancy might suggest that the study species utilized NO3 even in the upper site where net nitrification had not been detected. Measurements of nitrate reductase activity, an index of NO3 uptake, also supported this interpretation. Nitrate reduction occurred in leaves and roots at both the lower and the upper sites. Thus, the study species may be able to use NO3 even in soils with no net nitrification, a factor that could allow the distribution of F. crenata along the entire length of the slope.  相似文献   
43.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was previously reported to oxidize 2-naphthoic acid and 4-ethylbenzoic acid. In this study, we examined the substrate specificity and regioselectivity of CYP199A2 towards indole- and quinolinecarboxylic acids. The CYP199A2 gene was coexpressed with palustrisredoxin gene from R. palustris and putidaredoxin reductase gene from Pseudomonas putida to provide the redox partners of CYP199A2 in Escherichia coli. Following whole-cell assays, reaction products were identified by mass spectrometry and NMR spectroscopy. CYP199A2 did not exhibit any activity towards indole and indole-3-carboxylic acid, whereas this enzyme oxidized indole-2-carboxylic acid, indole-5-carboxylic acid, and indole-6-carboxylic acid. Indole-2-carboxylic acid was converted to 5- and 6-hydroxyindole-2-carboxylic acids at a ratio of 59:41. In contrast, the indole-6-carboxylic acid oxidation generated only one product, 2-indolinone-6-carboxylic acid, at a rate of 130 mol (mol P450)−1 min−1. Furthermore, CYP199A2 also oxidized quinoline-6-carboxylic acid, although this enzyme did not exhibit any activity towards quinoline and its derivatives with a carboxyl group at the C-2, C-3, or C-4 positions. The oxidation product of quinoline-6-carboxylic acid was identified to be 3-hydroxyquinoline-6-carboxylic acid, which was a novel compound. These results suggest that CYP199A2 may be a valuable biocatalyst for the regioselective oxidation of various aromatic carboxylic acids.  相似文献   
44.
Nicotianamine (NA), a metal chelator ubiquitous in higher plants, serves as an antihypertensive substance in humans. To engineer a novel antihypertensive rice that contains larger amounts of NA, the barley NA synthase gene, HvNAS1 , was introduced into rice via Agrobacterium -mediated transformation. The introduced HvNAS1 was driven by pGluB-1 , which induces strong gene expression in the endosperm of rice seeds. The NA content in transgenic rice seeds was up to fourfold greater than that in non-transgenic rice seeds. The Cre/ loxP DNA excision (CLX) system was used to remove the selectable marker gene for antibiotic resistance. Furthermore, the transgenic rice was crossed with a cleistogamous mutant to prevent gene transfer via pollen dispersal. These two modifications may minimize public concern with regard to the use of this transgenic rice.  相似文献   
45.
Staphylococcus aureus is a major cause of human disease, responsible for half a million infections and approximately 20,000 deaths per year in the United States alone. This pathogen secretes α-hemolysin, a pore-forming cytotoxin that contributes to the pathogenesis of pneumonia. α-hemolysin injures epithelial cells in vitro by interacting with its receptor, the zinc-dependent metalloprotease ADAM10 (ref. 6). We show here that mice harboring a conditional disruption of the Adam10 gene in lung epithelium are resistant to lethal pneumonia. Investigation of the molecular mechanism of toxin-receptor function revealed that α-hemolysin upregulates ADAM10 metalloprotease activity in alveolar epithelial cells, resulting in cleavage of the adherens junction protein E-cadherin. Cleavage is associated with disruption of epithelial barrier function, contributing to the pathogenesis of lethal acute lung injury. A metalloprotease inhibitor of ADAM10 prevents E-cadherin cleavage in response to Hla; similarly, toxin-dependent E-cadherin proteolysis and barrier disruption is attenuated in ADAM10-knockout mice. Together, these data attest to the function of ADAM10 as the cellular receptor for α-hemolysin. The observation that α-hemolysin can usurp the metalloprotease activity of its receptor reveals a previously unknown mechanism of pore-forming cytotoxin action in which pathologic insults are not solely the result of irreversible membrane injury and defines ADAM10 inhibition as a strategy to attenuate α-hemolysin-induced disease.  相似文献   
46.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.  相似文献   
47.
Heparan sulfate (HS) interacts with diverse heparin-binding growth factors and thereby regulates their bioactivities. These interactions depend on the structures characterized by the sulfation pattern and isomer of uronic acid residues. One of the biosynthetic modifications of HS, namely 6-O-sulfation, is catalyzed by three isoforms of HS6-O-sulfotransferase. We generated HS6ST-1- and/or HS6ST-2-deficient mice (6ST1-KO, 6ST2-KO, and double knock-out (dKO)) that exhibited different phenotypes. We examined the effects of HS 6-O-sulfation in heparin-binding growth factor signaling using fibroblasts derived from these mutant mice. Mouse embryonic fibroblasts (MEF) prepared from E14.5 dKO mice produced HS with little 6-O-sulfate, whereas 2-O-sulfation in HS from dKO-MEF (dKO-HS) was increased by 1.9-fold. HS6-O-sulfotransferase activity in the dKO-MEF was hardly detected, and HS2-O-sulfotransferase activity was 1.5-fold higher than that in wild type (WT)-MEFs. The response of dKO-MEFs to fibroblast growth factors (FGFs) was distinct from that of WT-MEFs; in dKO-MEFs, FGF-4- and FGF-2-dependent signalings were reduced to approximately 30 and 60% of WT-MEFs, respectively, and FGF-1-dependent signaling was moderately reduced compared with that of WT-MEFs but only at the lower FGF-1 concentrations. Analysis with a surface plasmon resonance biosensor demonstrated that the apparent affinity of dKO-HS for FGF-4 was markedly reduced and was also reduced for FGF-1. In contrast, the affinity of dKO-HS for FGF-2 was 2.5-fold higher than that of HS from WT-MEFs. Thus, 6-O-sulfate in HS may regulate the signalings of some of HB-GFs, including FGFs, by inducing different interactions between ligands and their receptors.  相似文献   
48.
49.
We studied the relationship between dietary intake and the blood compositions of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (ARA) in four study groups with different ages and sexes. One hundred and four subjects were recruited. Dietary records together with photographic records from 28 consecutive days were amassed and the fatty acid composition in erythrocyte membranes and plasma lipid fractions was analyzed. Fish intake in the elderly group was significantly higher than that in the young group in both men and women. The compositions of ARA in erythrocytes and plasma phospholipids in the elderly were lower than those in the young, but the ARA intake was nearly identical. In the elderly group, the percentage of dietary ARA consumed at the same time as EPA and DHA derived from fish was high. We considered that these fatty acids markedly inhibited the incorporation of dietary ARA into blood phospholipids.  相似文献   
50.
The N-terminal regions of AAA-ATPases (ATPase associated with various cellular activities) often contain a domain that defines the distinct functions of the enzymes, such as substrate specificity and subcellular localization. As described herein, we have determined the solution structure of an N-terminal unique domain isolated from nuclear valosin-containing protein (VCP)-like protein 2 (NVL2(UD)). NVL2(UD) contains three α helices with an organization resembling that of a winged helix motif, whereas a pair of β-strands is missing. The structure is unique and distinct from those of other known type II AAA-ATPases, such as VCP. Consequently, we identified nucleolin from a HeLa cell extract as a binding partner of this domain. Nucleolin contains a long (~300 amino acids) intrinsically unstructured region, followed by the four tandem RNA recognition motifs and the C-terminal glycine/arginine-rich domain. Binding analyses revealed that NVL2(UD) potentially binds to any of the combinations of two successive RNA binding domains in the presence of RNA. Furthermore, NVL2(UD) has a characteristic loop, in which the key basic residues RRKR are exposed to the solvent at the edge of the molecule. The mutation study showed that these residues are necessary and sufficient for nucleolin-RNA complex binding as well as nucleolar localization. Based on the observations presented above, we propose that NVL2 serves as an unfoldase for the nucleolin-RNA complex. As inferred from its RNA dependence and its ATPase activity, NVL2 might facilitate the dissociation and recycling of nucleolin, thereby promoting efficient ribosome biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号