首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3482篇
  免费   184篇
  国内免费   1篇
  2023年   13篇
  2022年   23篇
  2021年   57篇
  2020年   43篇
  2019年   37篇
  2018年   66篇
  2017年   55篇
  2016年   76篇
  2015年   127篇
  2014年   169篇
  2013年   232篇
  2012年   259篇
  2011年   263篇
  2010年   135篇
  2009年   146篇
  2008年   235篇
  2007年   229篇
  2006年   217篇
  2005年   203篇
  2004年   243篇
  2003年   189篇
  2002年   180篇
  2001年   37篇
  2000年   22篇
  1999年   30篇
  1998年   39篇
  1997年   33篇
  1996年   25篇
  1995年   34篇
  1994年   36篇
  1993年   24篇
  1992年   18篇
  1991年   20篇
  1990年   8篇
  1989年   18篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3667条查询结果,搜索用时 734 毫秒
171.
Many adverse effects on carp reproductive organs have been reported to be caused by exposure to environmental estrogens, such as nonylphenol and bisphenol A, which contaminate the aquatic environment. The glucuronidation activities of xenoestrogens (bisphenol A and diethylstilbestrol) and phytoestrogens (coumestrol, genistein and biochanin A), but not nonylphenol and octylphenol, were observed in microsomes prepared from carp organs. The highest levels of glucuronidation of environmental estrogens, for which the optimum temperature was 25-30 degrees C, were observed in the intestinal microsomes of 2-year-old carp. These activities in carp intestine increased developmentally, and the maximum levels corresponded to 5-10 % of that in rat liver microsomes. However, the glucuronidation of phytoestrogen by carp intestinal microsomes corresponded to that of rat liver microsomes. Only bisphenol A-glucuronide was excreted from the everted intestine, indicating that bisphenol A is metabolized in the carp intestine mainly as glucuronide.These results suggest that glucuronidation by carp intestine plays an important role for the detoxification of xenoestrogens and phytoestrogens, except for nonylphenol and octylphenol.  相似文献   
172.
Current therapy for type 1 diabetes mellitus involves a daily regimen of multiple subcutaneous or intramuscular injections of recombinant human insulin. To achieve long-term insulin delivery in vivo, we investigated the applicability of cytomedical therapy using beta TC6 cells or MIN6 cells, both of which are murine pancreatic beta cell lines that secrete insulin in a subphysiologically or physiologically regulated manner, respectively. We examined this therapy in the insulinopenic diabetic mice intraperitoneally injected with beta TC6 cells or MIN6 cells microencapsulated within alginate-poly(L)lysine-alginate membranes (APA-beta TC6 cells or APA-MIN6 cells). The diabetic mice treated with APA-beta TC6 cells fell into hypoglycemia, whereas those injected with APA-MIN6 cells maintained normal blood glucose concentrations for over 2 months without developing hypoglycemia. In addition, we also conducted an oral glucose tolerance test using these mice. The blood glucose concentrations of normal and of diabetic mice injected with APA-MIN6 cells similarly changed over time, although the blood insulin concentration increased later in the injected diabetic mice than in the former. These results suggest that cytomedicine utilizing microencapsulated pancreatic beta cell lines with a physiological glucose sensor may be a beneficial and safe therapy with which to treat diabetes mellitus.  相似文献   
173.
174.
Structure of the antimicrobial peptide tachystatin A   总被引:4,自引:0,他引:4  
The solution structure of antimicrobial peptide tachystatin A from the Japanese horseshoe crab (Tachypleus tridentatus) was determined by two-dimensional nuclear magnetic resonance measurements and distance-restrained simulated annealing calculations. The correct pairs of disulfide bonds were also confirmed in this study. The obtained structure has a cysteine-stabilized triple-stranded beta-sheet as a dominant secondary structure and shows an amphiphilic folding observed in many membrane-interactive peptides. Interestingly, tachystatin A shares structural similarities with the calcium channel antagonist omega-agatoxin IVA isolated from spider toxin and mammalian defensins, and we predicted that omega-agatoxin IVA also have the antifungal activity. These structural comparisons and functional correspondences suggest that tachystatin A and omega-agatoxin IVA may exert the antimicrobial activity in a manner similar to defensins, and we have confirmed such activity using fungal culture assays. Furthermore, tachystatin A is a chitin-binding peptide, and omega-agatoxin IVA also showed chitin-binding activities in this study. Tachystatin A and omega-agatoxin IVA showed no structural homology with well known chitin-binding motifs, suggesting that their structures belong to a novel family of chitin-binding peptides. Comparison of their structures with those of cellulose-binding proteins indicated that Phe(9) of tachystatin A might be an essential residue for binding to chitin.  相似文献   
175.
We examined the possibility that basic fibroblast growth factor (bFGF) is involved in synaptic transmissions. We found that bFGF rapidly induced the release of glutamate and an increase in the intracellular Ca2+ concentration through voltage-dependent Ca2+ channels in cultured cerebral cortical neurons. bFGF also evoked a significant influx of Na+. Tetanustoxin inhibited the bFGF-induced glutamate release, revealing that bFGF triggered exocytosis. The mitogen-activated protein kinase (MAPK) pathway was required for these acute effects of bFGF. We also found that pretreatment with bFGF significantly enhanced high K+-elicited glutamate release also in a MAPK activation-dependent manner. Therefore, we propose that bFGF exerts promoting effects on excitatory neuronal transmission via activation of the MAPK pathway.  相似文献   
176.
177.
178.
The UL56 gene product of herpes simplex virus (HSV) has been shown to play an important role in viral pathogenicity. However, the properties and functions of the UL56 protein are little understood. We raised rabbit polyclonal antisera specific for the UL56 protein of HSV type 2 (HSV-2) and examined its expression and properties. The gene product was identified as three polypeptides with apparent molecular masses ranging from 32 to 35 kDa in HSV-2-infected cells, and at least one species was phosphorylated. Studies of their origins showed that the UL56 protein of HSV-2 is also translated from the upstream in-frame methionine codon that is not present in the HSV-1 genome. Synthesis was first detected at 6 h postinfection and was not abolished by the viral DNA synthesis inhibitor phosphonoacetic acid. Indirect immunofluorescence studies revealed that the UL56 protein localized to both the Golgi apparatus and cytoplasmic vesicles in HSV-2-infected and single UL56-expressing cells. Deletion mutant analysis showed that the C-terminal hydrophobic region of the protein was required for association with the cytoplasmic membrane and that the N-terminal proline-rich region was important for its translocation to the Golgi apparatus and cytoplasmic vesicles. Moreover, the results of protease digestion assays and sucrose gradient fractionation strongly suggested that UL56 is a tail-anchored type II membrane protein associated with lipid rafts. We thus hypothesized that the UL56 protein, as a tail-anchored type II membrane protein, may be involved in vesicular trafficking in HSV-2-infected cells.  相似文献   
179.
180.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号