首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   650篇
  免费   53篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   10篇
  2017年   8篇
  2016年   8篇
  2015年   13篇
  2014年   24篇
  2013年   37篇
  2012年   45篇
  2011年   52篇
  2010年   23篇
  2009年   22篇
  2008年   45篇
  2007年   52篇
  2006年   50篇
  2005年   46篇
  2004年   38篇
  2003年   45篇
  2002年   41篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有704条查询结果,搜索用时 500 毫秒
81.
ASC is an adaptor molecule that mediates apoptotic and inflammatory signals from several Apaf-1-like molecules, including CARD12/Ipaf, cryopyrin/PYPAF1, PYPAF5, PYPAF7, and NALP1. To characterize the signaling pathway mediated by ASC, we established cell lines in which muramyl dipeptide, the bacterial component recognized by another Apaf-1-like molecule, Nod2, induced an interaction between a CARD12-Nod2 chimeric protein and ASC, and elicited cell autonomous NF-kappaB activation. This response required caspase-8, and was suppressed by CLARP/FLIP, an inhibitor of caspase-8. The catalytic activity of caspase-8 was required for the ASC-mediated NF-kappaB activation when caspase-8 was expressed at an endogenous level, although it was not essential when caspase-8 was overexpressed. In contrast, FADD, the adaptor protein linking Fas and caspase-8, was not required for this response. Consistently, ASC recruited caspase-8 and CLARP but not FADD and Nod2 to its speck-like aggregates in cells. Finally, muramyl dipeptide induced interleukin-8 production in MAIL8 cells. These results are the first to indicate that caspase-8 plays an important role in the ASC-mediated NF-kappaB activation, and that the ASC-mediated NF-kappaB activation actually induces physiologically relevant gene expression.  相似文献   
82.
83.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.  相似文献   
84.
Atopic dermatitis (AD) is a pruritic, chronically relapsing skin disease in which Th2 cells play a crucial role in cutaneous and extracutaneous immune reactions. In humans, CD11c+CD123- myeloid dendritic cells (mDC) and CD11c-CD123+ plasmacytoid DC (pDC) orchestrate the decision-making process in innate and acquired immunity. Since the number and function of these blood dendritic cell (DC) subsets reportedly reflect the host immune status, we studied the involvement of the DC subsets in the pathogenesis of AD. Patients with AD had an increased DC number and a low mDC:pDC ratio with pDC outnumbering mDC in the peripheral blood compared with normal subjects and psoriasis patients (a Th1 disease model group). The mDC:pDC ratio was correlated with the total serum IgE level, the ratio of IFN-gamma-producing blood cells:IL-4-producing blood cells, and the disease severity. In vitro allogeneic stimulation of naive CD4+ cells with atopic DC showed that the ability of pDC for Th1 induction was superior or comparable to that of mDC. In skin lesions, pDC infiltration was in close association with blood vessels expressing peripheral neural addressins. Therefore, compartmental imbalance and aberrant immune function of the blood DC subsets may deviate the Th1/Th2 differentiation and thus induce protracted allergic responses in AD.  相似文献   
85.
Several autoinflammatory disorders are associated with missense mutations within the nucleotide-binding oligomerization domain of cryopyrin. The mechanism by which cryopyrin mutations cause inflammatory disease remains elusive. To understand the molecular bases of these diseases, we generated constructs to express three common cryopyrin disease-associated mutations, R260W, D303N, and E637G, and compared their activity with that of the wild-type protein. All cryopyrin mutant proteins tested were found to induce potent NF-kappaB activity when compared with the wild-type protein. This activation was dependent on the expression of ASC, an adaptor protein previously suggested to mediate cryopyrin signaling. When the disease-associated mutants were expressed in monocytic THP-1 cells (which express endogenous ASC), each induced spontaneous IL-1beta secretion, whereas wild-type protein did not. In the absence of stimuli, wild-type cryopyrin was unable to bind to ASC, whereas the three mutants coimmunoprecipitated with ASC, suggesting a mechanism involved in the constitutive activation of mutant proteins. The induction of cryopyrin activity by enforced oligomerization in THP-1 cells resulted in ASC binding and the secretion of IL-1beta, an effect that was abolished by the inhibition of ASC expression with small interfering RNAs. Thus, cryopyrin-mediated IL-1beta secretion requires ASC in monocytic cells. Further, these results indicate that cryopyrin disease-associated mutants are constitutively active and able to induce NF-kappaB activation and IL-1beta secretion at least in part by an increased ability to interact with ASC.  相似文献   
86.
The 3D structure of human factor VIIa/soluble tissue factor in complex with a peptide mimetic inhibitor, propylsulfonamide-D-Thr-Met-p-aminobenzamidine, is determined by X-ray crystallography. As compared with the interactions between thrombin and thrombin inhibitors, the interactions at S2 and S3 sites characteristic of factor VIIa and factor VIIa inhibitors are revealed. The S2 site has a small pocket, which is filled by the hydrophobic methionine side chain in P2. The small S3 site fits the small size residue, D-threonine in P3. The structural data and SAR data of the peptide mimetic inhibitor show that these interactions in the S2 and S3 sites play an important role for the improvement of selectivity versus thrombin. The results will provide valuable information for the structure-based drug design of specific inhibitors for FVIIa/TF.  相似文献   
87.
88.
89.
Contribution of bone-marrow-derived cells to choroidal neovascularization   总被引:1,自引:0,他引:1  
We investigated the involvement of bone-marrow derived cells to experimental choroidal neovascularization (CNV) in mice, whose bone marrow was reconstituted by either unfractionated bone-marrow cells or Lin-c(-)Kit(+)Sca-1+ enriched presumable hematopoietic stem cells from the green fluorescent protein (GFP) transgeneic mice. Immunohistochemical analysis demonstrated the presence of GFP-positive cells in the CNV lesion after unfractionated bone-marrow transplantation, as well as Lin-c(-)Kit(+)Sca-1+ cell transplantation. Some of the GFP-expressing cells also expressed CD-31 and PanEC antigen, markers of vascular endothelial cells. Our results suggest that bone-marrow derived cells may contribute endothelial cells in CNV.  相似文献   
90.
Over the past decades there has been considerable progress in understanding the multifunctional roles of mitochondrial ion channels in metabolism, energy transduction, ion transport, signaling, and cell death. Recent data have suggested that some of these channels function under physiological condition, and others may be activated in response to pathological insults and play a key role in cytoprotection. This review outlines our current understanding of the molecular identity and pathophysiological roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, and future research on mitochondrial ion channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号