首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   931篇
  免费   63篇
  2022年   8篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   14篇
  2017年   12篇
  2016年   18篇
  2015年   32篇
  2014年   31篇
  2013年   34篇
  2012年   54篇
  2011年   63篇
  2010年   45篇
  2009年   21篇
  2008年   48篇
  2007年   55篇
  2006年   57篇
  2005年   40篇
  2004年   56篇
  2003年   50篇
  2002年   48篇
  2001年   20篇
  2000年   20篇
  1999年   16篇
  1998年   17篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1992年   31篇
  1991年   20篇
  1990年   12篇
  1989年   7篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   6篇
  1983年   9篇
  1982年   4篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   8篇
  1973年   4篇
  1970年   5篇
  1968年   5篇
  1967年   4篇
排序方式: 共有994条查询结果,搜索用时 734 毫秒
111.
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis-segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis-segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1-dependent checkpoint.  相似文献   
112.
113.
Mammalian preimplantation embryos are vulnerable to heat stress. However, the mechanisms by which maternal heat stress compromises embryonic development are unclear. We hypothesized that the loss of developmental competence in maternally heat-stressed embryos results from enhanced oxidative stress in the oviducts. In experiment 1, oviducts and zygotes were collected from mice that were heat-stressed at 35 degrees C and 60% relative humidity for 12 h on the day of pregnancy as well as from control mice. The zygotes were cultured for 84 h to assess their development, and the H(2)O(2) level, glutathione concentration, and free radical scavenging activity (FRSA) were measured in the oviduct. In experiment 2, zygotes were cultured for 22 h to reach the late G(2) phase in the 2-cell stage, and Cdc2 activity was assessed using immunoblotting. A high percentage (87.6%) of control embryos developed to morulae or blastocysts, whereas the majority (67.4%) of the heat-stressed group arrested at the 2-cell stage. Although heat stress did not alter the FRSA or glutathione concentration in the oviducts, the H(2)O(2) level (P < 0.01) and its ratio to the FRSA (P < 0.05) significantly increased in the heat-stressed group. The Cdc2 activation at the 2-cell stage, as shown by the ratio of the dephosphorylated form to the phosphorylated form, was evident in control embryos but absent in heat-stressed embryos, and the level was similar to that in embryos blocked at the 2-cell stage (positive control). These results indicate that maternal heat stress enhances oxidative stress in the oviducts and that loss of developmental competence in maternally heat-stressed embryos correlates with a defect in Cdc2 activity at the 2-cell stage.  相似文献   
114.
Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membrane to cytosol) and dependent on PKC activity, indicating that myristoylated alanine-rich protein kinase C substrate is repetitively phosphorylated by oscillating gammaPKC on the plasma membrane. Mutation of mGluR5 Thr(840) to aspartate abolished the oscillation of gammaPKC, but the mutation to alanine (T840A) did not. Cotransfection of gammaPKC with betaIIPKC, another Ca2+-dependent PKC, resulted in synchronous oscillatory translocation of both classical PKCs. In contrast, cotransfection of deltaPKC, a Ca2+-independent PKC, abolished the oscillations of both gammaPKC and inositol 1,4,5-trisphosphate. Regulation of the oscillations was dependent on deltaPKC kinase activity but not on gammaPKC. Furthermore, the T840A-mGluR5-mediated oscillations were not blocked by the deltaPKC overexpression. These results revealed that activation of mGluR5 causes translocation of both gammaPKC and deltaPKC to the plasma membrane. deltaPKC, but not gammaPKC, phosphorylates mGluR5 Thr(840), leading to the blockade of both Ca2+ oscillations and gammaPKC cycling. This subtype-specific targeting proposes the molecular basis of the multiple functions of PKC.  相似文献   
115.
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.  相似文献   
116.
The relationship between oxidative stress and longevity is a matter of concern in various organisms. We isolated mutants resistant to paraquat from nematode Caenorhabditis elegans. One mutant named mev-4 was long-lived and showed cross-resistance to heat and Dyf phenotype (defective in dye filling). Genetic and sequence analysis revealed that mev-4 had a nonsense mutation on the che-11 gene, homologues of which are involved in formation of cilia and flagella in other organisms. The paraquat resistance was commonly observed in various Dyf mutants and did not depend on the daf-16 gene, whereas the extension of life span did depend on it. Expression of antioxidant enzyme genes seemed normal. These results suggest that chemosensory neurons are a target of oxidative stress and influence longevity dependent on the daf-16 signaling in C. elegans.  相似文献   
117.
Protein kinase C (PKC) plays a prominent role in immune signaling. To elucidate the signal transduction in a respiratory burst and isoform-specific function of PKC during FcgammaR-mediated phagocytosis, we used live, digital fluorescence imaging of mouse microglial cells expressing GFP-tagged molecules. betaI PKC, epsilonPKC, and diacylglycerol kinase (DGK) beta dynamically and transiently accumulated around IgG-opsonized beads (BIgG). Moreover, the accumulation of p47(phox), an essential cytosolic component of NADPH oxidase and a substrate for betaI PKC, at the phagosomal cup/phagosome was apparent during BIgG ingestion. Superoxide (O(2)(-)) production was profoundly inhibited by G?6976, a cPKC inhibitor, and dramatically increased by the DGK inhibitor, R59949. Ultrastructural analysis revealed that BIgG induced O(2)(-) production at the phagosome but not at the intracellular granules. We conclude that activation/accumulation of betaI PKC is involved in O(2)(-) production, and that O(2)(-) production is primarily initiated at the phagosomal cup/phagosome. This study also suggests that DGKbeta plays a prominent role in regulation of O(2)(-) production during FcgammaR-mediated phagocytosis.  相似文献   
118.
The Hemicentrotus pulcherrimus homologue of nanos (HpNanos), that encodes a protein containing two CCHC zinc finger motifs, was isolated from a gastrula cDNA library. The accumulation of HpNanos mRNA during embryonic development and the spatial expression pattern are reported. Developmental northern blot analysis revealed that HpNanos mRNA markedly accumulated during the blastula stages, and then decreased in abundance at the mesenchyme blastula stage. The second phase of HpNanos mRNA expression occurred during gastrulation, after which the expression returned to a low level. Whole-mount in situ hybridization showed that the HpNanos was exclusively expressed in four to six small micromere-descendant cells at the blastula stage. The expression of HpNanos was restricted to the coelomic pouch, which gives rise to the mesoderm of the ventral surface of the adult rudiment, at the prism stage. These results suggest that HpNanos expression will be instrumental for future analyses of the function of small micromere-descendant cells and of the origin of germ cells during sea urchin development.  相似文献   
119.
We identified a novel prostaglandin (PG)-specific organic anion transporter (OAT) in the OAT group of the SLC22 family. The transporter designated OAT-PG from mouse kidney exhibited Na+-independent and saturable transport of PGE2 when expressed in a proximal tubule cell line (S2). Unusual for OAT members, OAT-PG showed narrow substrate selectivity and high affinity for a specific subset of PGs, including PGE2, PGF, and PGD2. Similar to PGE2 receptor and PGT, a structurally distinct PG transporter, OAT-PG requires for its substrates an α-carboxyl group, with a double bond between C13 and C14 as well as a (S)-hydroxyl group at C15. Unlike the PGE2 receptor, however, the hydroxyl group at C11 in a cyclopentane ring is not essential for OAT-PG substrates. Addition of a hydroxyl group at C19 or C20 impairs the interaction with OAT-PG, whereas an ethyl group at C20 enhances the interaction, suggesting the importance of hydrophobicity around the ω-tail tip forming a “hydrophobic core” accompanied by a negative charge, which is essential for substrates of OAT members. OAT-PG-mediated transport is concentrative in nature, although OAT-PG mediates both facilitative and exchange transport. OAT-PG is kidney-specific and localized on the basolateral membrane of proximal tubules where a PG-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase, is expressed. Because of the fact that 15-keto-PGE2, the metabolite of PGE2 produced by 15-hydroxyprostaglandin dehydrogenase, is not a substrate of OAT-PG, the transport-metabolism coupling would make unidirectional PGE2 transport more efficient. By removing extracellular PGE2, OAT-PG is proposed to be involved in the local PGE2 clearance and metabolism for the inactivation of PG signals in the kidney cortex.  相似文献   
120.
Long-chain and/or branched-chain polyamines are unique polycations found in thermophiles. Cytoplasmic polyamines were analyzed for cells cultivated at various growth temperatures in the hyperthermophilic archaeon Thermococcus kodakarensis. Spermidine [34] and N4-aminopropylspermine [3(3)43] were identified as major polyamines at 60°C, and the amounts of N4-aminopropylspermine [3(3)43] increased as the growth temperature rose. To identify genes involved in polyamine biosynthesis, a gene disruption study was performed. The open reading frames (ORFs) TK0240, TK0474, and TK0882, annotated as agmatine ureohydrolase genes, were disrupted. Only the TK0882 gene disruptant showed a growth defect at 85°C and 93°C, and the growth was partially retrieved by the addition of spermidine. In the TK0882 gene disruptant, agmatine and N1-aminopropylagmatine accumulated in the cytoplasm. Recombinant TK0882 was purified to homogeneity, and its ureohydrolase characteristics were examined. It possessed a 43-fold-higher kcat/Km value for N1-aminopropylagmatine than for agmatine, suggesting that TK0882 functions mainly as N1-aminopropylagmatine ureohydrolase to produce spermidine. TK0147, annotated as spermidine/spermine synthase, was also studied. The TK0147 gene disruptant showed a remarkable growth defect at 85°C and 93°C. Moreover, large amounts of agmatine but smaller amounts of putrescine accumulated in the disruptant. Purified recombinant TK0147 possessed a 78-fold-higher kcat/Km value for agmatine than for putrescine, suggesting that TK0147 functions primarily as an aminopropyl transferase to produce N1-aminopropylagmatine. In T. kodakarensis, spermidine is produced mainly from agmatine via N1-aminopropylagmatine. Furthermore, spermine and N4-aminopropylspermine were detected in the TK0147 disruptant, indicating that TK0147 does not function to produce spermine and long-chain polyamines.Polyamines are positively charged aliphatic compounds. Putrescine [4], spermidine [34], and spermine [343] are common polyamines observed in various living organisms, from viruses to humans (16). Polyamines, which play important roles in cell proliferation and cell differentiation (19, 34), are thought to contribute to adaptation against various stresses (9, 26). In thermophilic microorganisms, polyamines contribute to growth under high-temperature conditions. Indeed, in the thermophilic bacterium Thermus thermophilus, a mutant strain lacking the enzyme related to polyamine biosynthesis shows defective growth at high temperatures (23). Furthermore, thermophilic archaea and bacteria possess long-chain and branched-chain polyamines such as N4-aminopropylspermidine [3(3)4], N4-aminopropylspermine [3(3)43], and N4-bis(aminopropyl)spermidine [3(3)(3)4], in addition to common polyamines (11, 13, 14). N4-aminopropylspermine was detected in the cells of thermophiles, such as Saccharococcus thermophilus, thermophilic Bacillus and Geobacillus spp. (Bacillus caldolyticus, B. caldotenax, B. smithii, Geobacillus stearothermophilus, and G. thermocatenulatus), Caldicellulosiruptor spp. (C. kristjanssonii and C. owensensis) and Calditerricola spp. (C. satsumensis and C. yamamurae) (10, 12, 22), but it was not detected in archaea. These unique polyamines are thought to support the growth of thermophilic microorganisms under high-temperature conditions. An in vitro study indicated that long-chain and branched-chain polyamines effectively stabilized DNA and RNA, respectively (32).Polyamines are synthesized from amino acids such as arginine, ornithine, and methionine (26). In most eukaryotes, putrescine is synthesized directly from ornithine by ornithine decarboxylase (34). Plants and some bacteria possess additional or alternative putrescine biosynthesis pathways in which putrescine is synthesized from arginine via agmatine (18, 31, 35). In this pathway, agmatine is synthesized by arginine decarboxylase, and agmatine is converted to putrescine by agmatine ureohydrolase or a combination of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. Longer polyamines are then produced by the addition of the aminopropyl group from decarboxylated S-adenosylmethionine. This pathway is shown on the left in Fig. Fig.11 (pathway I). On the other hand, the thermophilic bacterium T. thermophilus possesses a unique polyamine-biosynthetic pathway (23) in which spermidine is synthesized from agmatine via N1-aminopropylagmatine by aminopropyl transferase followed by ureohydrolase, as shown on the right in Fig. Fig.11 (pathway II).Open in a separate windowFIG. 1.Predicted biosynthetic pathway of polyamines in T. kodakarensis. (A) Predicted biosynthetic pathway. Pyruvoyl-dependent arginine decarboxylase proenzyme (TK0149), arginine/agmatine ureohydrolases (TK0240/TK0474/TK0882), aminopropyl transferase (TK0147), and pyruvoyl-dependent S-adenosylmethionine decarboxylase proenzyme (TK1592) are shown based on the genome analysis. (B) Structures of unique polyamines.A sulfur-reducing hyperthermophilic archaeon, Thermococcus kodakarensis KOD1, was isolated from Kodakara Island, Kagoshima, Japan (1, 21). This archaeon grows at temperatures between 60°C and 100°C but optimally at 85°C. Under low- or high-temperature-stressed conditions, T. kodakarensis produces cold- or heat-inducible chaperones to adapt to unfavorable growth environments (4, 5, 30). The lipid composition of the membrane also changes depending on the growth shift (20). In addition to acting as such tolerance factors, polyamines have been suggested to play an important role in maintaining nucleosomes in high-temperature environments (15). A complete genome analysis of T. kodakarensis has been performed, and the pathway of polyamine biosynthesis has been predicted (Fig. (Fig.1)1) (6, 7). It has been speculated that putrescine is synthesized from arginine via agmatine by arginine decarboxylase (PdaDTk) and agmatine ureohydrolase. Long- and/or branched-chain polyamines are then produced by the addition of the aminopropyl group derived from decarboxylated S-adenosylmethionine. Previously, we revealed that PdaDTk catalyzed the first step of polyamine biosynthesis and was essential for cell growth (6). The strain DAD, which lacks the gene pdaDTk, does not grow in medium without agmatine. Archaeal cells are known to use agmatine to synthesize agmatidine, which is an agmatine-conjugated cytidine found at the anticodon wobble position of archaeal tRNAIle (17). Agmatine is important for agmatidine synthesis as well as long-chain polyamine. In the present study, we focused on the subsequent steps in polyamine biosynthesis, especially from agmatine to spermidine. T. kodakarensis possesses three agmatine ureohydrolase homologues (TK0240, TK0474, and TK0882); however, it is unclear which one is dominantly functional in T. kodakarensis cells. In a closely related genus, Pyrococcus, TK0474 and TK0882 orthologues have been identified, but the TK0240 orthologue is missing in Pyrococcus genomes. In Pyrococcus horikoshii, PH0083, which is an orthologue of TK0882, was shown to possess agmatine ureohydrolase activity (8). TK0882, hence, appears to possess agmatine ureohydrolase activity as well. It is unclear whether other agmatine ureohydrolase homologues (TK0240 and TK0474) are involved in polyamine synthesis and cell growth in T. kodakarensis. In addition to agmatine ureohydrolase, aminopropyl transferase plays a crucial role in the synthesis of polyamines. TK0147 was annotated first as spermidine synthase and shares sequence identity with aminopropyl transferase (PF0127) from Pyrococcus furiosus (3). It is therefore expected to harbor the function of aminopropyl transferase for long-chain-polyamine synthesis. Recombinant PF0127 showed broad amine acceptor specificity for agmatine, 1,3-diaminopropane (3), putrescine, cadaverine (5), sym-nor-spermidine (33), and spermidine. While maximal catalytic activity was observed with cadaverine, agmatine was most often preferred on the basis of the kcat/Km value (3), suggesting that pathway II is a dominant route for polyamine synthesis in P. furiosus. In the present study, various disruptants lacking genes for polyamine biosynthesis were constructed in order to understand the physiological roles of these enzymes in T. kodakarensis. The cell growth profiles and cytoplasmic polyamines of the wild type and the disruptants were analyzed and compared. Recombinant enzymes were also purified and characterized. The obtained results are expected to provide useful information regarding the specific roles of polyamines in thermophiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号