首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   2篇
  2018年   12篇
  2017年   14篇
  2016年   14篇
  2015年   9篇
  2014年   17篇
  2013年   43篇
  2012年   40篇
  2011年   35篇
  2010年   19篇
  2009年   14篇
  2008年   24篇
  2007年   26篇
  2006年   29篇
  2005年   16篇
  2004年   25篇
  2003年   20篇
  2002年   14篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有427条查询结果,搜索用时 375 毫秒
51.
Regiospecifically sulfated chondroitin sulfate repeating tetrasaccharides, CS-OO, GlcAβ-GalNAcβ-GlcAβ-GalNAcβ;CS-EE, GlcAβ-GalNAc(4S6S)β-GlcAβ-GalNAc(4S6S)β; and CS-AA, GlcAβ-GalNAc(4S)β-GlcAβ-GalNAc(4S)β, having biotin linked with a hydrophilic linker at the reducing terminal were synthesized effectively by a coupling of the corresponding disaccharide units and regioselective sulfation. CS-EE showed greater affinity for midkine than CS-AA and CS-OO.  相似文献   
52.
53.
Eukaryotic releasing factor GSPT/eRF3 mediates translation termination-coupled mRNA decay via interaction with a cytosolic poly(A)-binding protein (PABPC1). A region of eRF3 containing two overlapping PAM2 (PABPC1-interacting motif 2) motifs is assumed to bind to the PABC domain of PABPC1, on the poly(A) tail of mRNA. PAM2 motifs are also found in the major deadenylases Caf1–Ccr4 and Pan2–Pan3, whose activities are enhanced upon PABPC1 binding to these motifs. Their deadenylase activities are regulated by eRF3, in which two overlapping PAM2 motifs competitively prevent interaction with PABPC1. However, it is unclear how these overlapping motifs recognize PABC and regulate deadenylase activity in a translation termination-coupled manner. We used a dominant-negative approach to demonstrate that the N-terminal PAM2 motif is critical for eRF3 binding to PABPC1 and that both motifs are required for function. Isothermal titration calorimetry (ITC) and NMR analyses revealed that the interaction is in equilibrium between the two PAM2–PABC complexes, where only one of the two overlapping PAM2 motifs is PABC-bound and the other is PABC-unbound and partially accessible to the other PABC. Based on these results, we proposed a biological role for the overlapping PAM2 motifs in the regulation of deadenylase accessibility to PABPC1 at the 3′ end of poly(A).  相似文献   
54.
Polypeptide chain release factor eRF3 plays pivotal roles in translation termination and post-termination events including ribosome recycling and mRNA decay. It is not clear, however, if eRF3 is targeted for the regulation of gene expression. Here we show that DNA-damaging agents (UV and etoposide) induce the immediate cleavage and degradation of eRF3 in a caspase-dependent manner. The effect is selective since the binding partners of eRF3, eRF1 and PABP, and an unrelated control, GAPDH, were not affected. Point mutations of aspartate residues within overlapping DXXD motifs near the amino terminus of eRF3 prevented the appearance of the UV-induced cleavage product, identifying D32 as the major cleavage site. The cleavage and degradation occurred in a similar time-dependent manner to those of eIF4G, a previously established caspase-3 target involved in the inhibition of translation during apoptosis. siRNA-mediated knockdown of eRF3 led to inhibition of cellular protein synthesis, supporting the idea that the decrease in the amount of eRF3 caused by the caspase-mediated degradation contributes to the inhibition of translation during apoptosis. This is the first report showing that eRF3 could serve as a target in the regulation of gene expression.  相似文献   
55.
Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. Although baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type (WT) mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower WT GLS1 gene expression, there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning, whereas juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia.  相似文献   
56.
We previously identified a novel angiogenic peptide, AG30, with antibacterial effects that could serve as a foundation molecule for the design of wound-healing drugs. Toward clinical application, in this study we have developed a modified version of the AG30 peptide characterized by improved antibacterial and angiogenic action, thus establishing a lead compound for a feasibility study. Because AG30 has an α-helix structure with a number of hydrophobic and cationic amino acids, we designed a modified AG30 peptide by replacing several of the amino acids. The replacement of cationic amino acids (yielding a new molecule, AG30/5C), but not hydrophobic amino acids, increased both the angiogenic and the antimicrobial properties of the peptide. AG30/5C was also effective against methicillin-resistant Staphylococcus aureus (MRSA) and antibiotic-resistant Pseudomonas aeruginosa. In a diabetic mouse wound-healing model, the topical application of AG30/5C accelerated wound healing with increased angiogenesis and attenuated MRSA infection. To facilitate the eventual clinical investigation/application of these compounds, we developed a large-scale procedure for the synthesis of AG30/5C that employed the conventional solution method and met Good Manufacturing Practice guidelines. In the evaluation of stability of this peptide in saline solution, RP-HPLC analysis revealed that AG30/5C was fairly stable under 5°C for 12 months. Therefore, we propose the use of AG30/5C as a wound-healing drug with antibacterial and angiogenic actions.  相似文献   
57.
Hepatitis C virus (HCV) cell culture system with JFH-1 strain and HuH-7 cells enabled us to produce infectious HCV particles in vitro, and such system is useful to explore the anti-HCV compounds and to develop the vaccine against HCV. In the present study, we describe the derivation of a cell line that permits improved production of HCV particles. Specifically, we characterized several subclones that were isolated from the original HuH-7 cell line by limiting dilution. These HuH-7 subclones displayed a notable range of HCV production levels following transfection by full-genome JFH-1 RNA. Among these subclones, HuH-7T1 produced HCV more efficiently than other subclones and Huh-7.5.1 that is known to be highly permissive for HCV replication. Upon transfection with full-genome RNA, HCV production was increased ten-fold in HuH-7T1 compared to Huh-7.5.1. This increase in viral production correlated with increased efficiency of intracellular infectious virus production. Furthermore, HCV replication did not induce cell cycle arrest in HuH-7T1, whereas it did in Huh-7.5.1. Consequently, the use of HuH-7T1 as host cells could provide increased population of HCV-positive cells and elevated viral titer. In conclusion, we isolated a HuH-7 subclone, HuH-7T1, that supports efficient HCV production. High efficiency of intracellular infectious virus production and evasion of cell cycle arrest were important for this phenotype. We expect that the use of this cell line will facilitate analysis of the underlying mechanisms for HCV particle assembly and the cell cycle arrest caused by HCV.  相似文献   
58.
59.
60.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号