首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   4篇
  80篇
  2021年   1篇
  2019年   2篇
  2017年   4篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   9篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1973年   1篇
排序方式: 共有80条查询结果,搜索用时 16 毫秒
41.
Many organisms, including higher plants, accumulate free proline (Pro) in response to osmotic stress. Although various studies have focused on the ability of Pro as a compatible osmolyte involved in osmotolerance, its specific role throughout plant growth is still unclear. It has been reported that Pro is synthesized from Glu catalyzed by a key enzyme, delta 1-pyrroline-5-carboxylate synthetase (P5CS), in plants. To elucidate essential roles of Pro, we generated antisense transgenic Arabidopsis plants with a P5CS cDNA. Several transgenics accumulated Pro at a significantly lower level than wild-type plants, providing direct evidence for a key role of P5CS in Pro production in Arabidopsis. These antisense transgenics showed morphological alterations in leaves and a defect in elongation of inflorescences. Furthermore, transgenic leaves were hypersensitive to osmotic stress. Microscopic analysis of transgenic leaves, in which the mutated phenotype clearly occurred, showed morphological abnormalities of epidermal and parenchymatous cells and retardation of differentiation of vascular systems. These phenotypes were suppressed by exogenous L-Pro but not by D-Pro or other Pro analogues. In addition, Pro deficiency did not broadly affect all proteins but specifically affected structural proteins of cell walls in the antisense transgenic plants. These results indicate that Pro is not just an osmoregulator in stressed plants but has a unique function involved in osmotolerance as well as in morphogenesis as a major constituent of cell wall structural proteins in plants.  相似文献   
42.
Flooding is a major problem for soybean crop as it reduces the growth and grain yield. To investigate the function of the soybean cell wall in the response to flooding stress, cell wall proteins were analyzed. Cell wall proteins from roots and hypocotyls of soybeans, which were germinated for 2 days and subjected to 2 days of flooding, were purified, separated by two-dimensional polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue. Sixteen out of 204 cell wall proteins showed responses to flooding stress. Of these, two lipoxygenases, four germin-like protein precursors, three stem 28/31 kDa glycoprotein precursors, and one superoxide dismutase [Cu–Zn] were downregulated. A copper amine oxidase was found to have shifted from the basic to acidic zone following flooding stress. Based on these results, it was confirmed by the lignin staining that the lignification was suppressed in the root of soybean under the flooding stress. These results suggest that the roots and hypocotyls of soybean caused the suppression of lignification through decrease of these proteins by downregulation of reactive oxygen species and jasmonate biosynthesis under flooding stress.  相似文献   
43.
Chitosanase from the culture filtrate of Nocardia orientalis was purified to apparent homogeneity by precipitation with ammonium sulfate followed by CM-Sephadex chromatography, biospecific affinity chromatography on a Sepharose CL-4B with immobilized chitotriose and by gel filtration on Sephadex G-75. The enzyme specifically acted on chitooligosaccharides and chitosan to yield chitobiose and chitotriose as final products. The mode of action of the chitosanase on chitooligosaccharides and their corresponding alcohols suggests that the enzyme requires substrates with four or more glucosamine residues for the expression of activity and its shows maximum activity on chitohexaose and chitoheptaose. In the hydrolysis of chitosans of varying N-acetyl content, the enzyme cleaved about 30% acetylated chitosan with maximum activity and the enzyme activity decreased with increasing the degree of deacetylation of chitosans tested. The analysis of products formed from 33% acetylated chitosan shows the chitosanase is capable of cleaving between glucosamine and glucosamine or N-acetylglucosamine, but not cleaving between N-acetylglucosamine and glucosamine. On the basis of the results, the whole pathway of enymatic degradation of partially acetylated chitosan by a combination of chitosanase, exo-beta-D-glucosaminidase and beta-N-acetylhexosaminidase is proposed.  相似文献   
44.
45.
Proteome analysis of soybean leaves,hypocotyls and roots under salt stress   总被引:4,自引:0,他引:4  

Background  

Salinity is one of the most widespread agricultural problems in arid and semi-arid regions that makes fields unproductive, and soil salinization is a serious problem in the entire world. To determine the effects of salt stress on soybean seedlings, a proteomic technique was used.  相似文献   
46.
Sequence specific damage of DNA induced by reducing sugars.   总被引:2,自引:0,他引:2       下载免费PDF全文
Reducing sugars induced alkali-labile sites in DNA. The DNA reacted with D-fructose 6-phosphate or D-fructose in the presence of Cu2+ was cleaved by the treatment with aqueous piperidine at 90 degrees C for 30 min. Alkali-labile sites were induced frequently at the pyrimidine residues, especially at the pyrimidine residues in pyrimidine-purine (5'----3') sequences. Transition metal ions such as Cu2+ and oxygen radicals such as hydrogen peroxide were possibly involved in the induction of alkali-labile sites.  相似文献   
47.
48.
49.
Flooding injury is a major problem in soybean cultivation. A proteomics approach was used to clarify the occurrence of changes in protein expression level and phosphorylation in soybeans under flooding stress. Two-day-old seedlings were flooded for 1 day, proteins were extracted from root tips of the seedlings and digested with trypsin, and their expression levels and phosphorylation states were compared to those of untreated controls using mass spectrometry-based proteomics techniques. Phosphoproteins were enriched using a phosphoprotein purification column prior to digestion and mass spectrometry. The expression of proteins involved in energy production increased as a result of flooding, while expression of proteins involved in protein folding and cell structure maintenance decreased. Flooding induced changes of phosphorylation status of proteins involved in energy generation, protein synthesis and cell structure maintenance. The response to flooding stress may be regulated by both modulation of protein expression and phosphorylation state. Energy-demanding and production-related metabolic pathways may be particularly subject to regulation by changes in protein phosphorylation during flooding.  相似文献   
50.
In a study of the responses of photosystem II (PSII) to high temperature in suspension-cultured cells of soybean (Glycine max L. Merr.), we found that high temperatures inactivated PSII via two distinct pathways. Inactivation of PSII by moderately high temperatures, such as 41°C, was reversed upon transfer of cells to 25°C. The recovery of PSII required light, but not the synthesis of proteins de novo. By contrast, temperatures higher than 45°C inactivated PSII irreversibly. An increase in the growth temperature from 25 to 35°C resulted in an upward shift of 3°C in the profile of the heat-induced inactivation of PSII, which indicated that the thermal stability of PSII had been enhanced. This acclimative response was reflected by the properties of isolated thylakoid membranes: PSII in thylakoid membranes from cells that had been grown at 35°C exhibited greater thermal stability than that from cells grown at 25°C. Disruption of the vesicular structure of thylakoid membranes with 0.05% Triton X-100 decreased the thermal stability of PSII to a similar level in both types of thylakoid membrane. Proteins released by Triton X-100 from thylakoid membranes from cells grown at 35°C were able to increase the thermal stability of Triton-treated thylakoid membranes. These observations suggest that proteins that are associated with thylakoid membranes might be involved in the enhancement of the thermal stability of PSII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号