首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   35篇
  国内免费   2篇
  613篇
  2023年   12篇
  2022年   16篇
  2021年   42篇
  2020年   21篇
  2019年   15篇
  2018年   18篇
  2017年   14篇
  2016年   26篇
  2015年   41篇
  2014年   36篇
  2013年   35篇
  2012年   50篇
  2011年   52篇
  2010年   23篇
  2009年   25篇
  2008年   41篇
  2007年   29篇
  2006年   21篇
  2005年   17篇
  2004年   20篇
  2003年   11篇
  2002年   14篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
281.
The giant willow aphid Tuberolachnus salignus Gmelin is a large phloem-feeding insect which colonizes the stems of willow trees. This aphid is a new invasive species in New Zealand and there is limited knowledge of its inter-annual population patterns and the damage it can cause to willow hosts. Our study investigated the T. salignus population dynamics and its effects on the flowering parameters of fifteen willow species and hybrids in a field trial. The aphid population levels were found to vary among the willow species and hybrids. Based on the aphid population levels, the willow species and hybrids were classified as resistant, moderately resistant, susceptible or highly susceptible. T. salignus infestation had no effect on the flowering of resistant and moderately resistant willows, but significantly delayed the flowering time, extended the flowering duration, and decreased the catkin length in susceptible species and hybrids. Interestingly, aphid infestation was found to increase the catkin number and total floral output of some willow species and hybrids. It can be concluded that aphid populations and their effects on flowering are host-specific, with large differences between resistant and susceptible host plants.  相似文献   
282.
We prepared an aminothiourea‐derived Schiff base (DA) as a fluorescent chemosensor for Hg2+ ions. Addition of 1 equiv of Hg2+ ions to the aqueous solution of DA gave rise to an obvious fluorescence enhancement and the subsequent addition of more Hg2+ induced gradual fluorescence quenching. Other competing ions, including Pb2+, Cd2+, Cr3+, Zn2+, Fe2+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+, did not induce any distinct fluorescence changes, indicating that DA can selectively detect Hg2+ ions in aqueous solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
283.
The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca2+-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (∼3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average dN/dS ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.  相似文献   
284.
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.Peroxisomes, originally known as microbodies, are small and single-membrane eukaryotic organelles that compartmentalize various oxidative metabolic functions. Most peroxisomal matrix proteins carry a C-terminal tripeptide named PEROXISOME TARGETING SIGNAL TYPE1 (PTS1), and fewer contain an N-terminal nonapeptide, PTS2 (Lanyon-Hogg et al., 2010). PTS1 is further divided into major and minor PTS1s. Major PTS1 tripeptides, such as SKL> and SRL> (> represents the stop codon), are by themselves sufficient to direct a protein to the peroxisome (Reumann, 2004), whereas minor PTS1s are usually found in low-abundance proteins and require additional upstream elements for peroxisomal targeting (Kaur et al., 2009). Peroxisomes are highly variable morphologically and metabolically, as their size, shape, abundance, and enzymatic content can differ depending on the species, tissue and cell type, and prevailing environmental conditions (Beevers, 1979; van den Bosch et al., 1992; Kaur et al., 2009; Hu et al., 2012; Schrader et al., 2012).Plant peroxisomes participate in a wide range of metabolic processes, such as lipid metabolism, photorespiration, detoxification, biosynthesis of jasmonic acid, and metabolism of indole-3-butyric acid (IBA), nitrogen, sulfite, and polyamine (Kaur et al., 2009; Hu et al., 2012). Specific names had been given to certain types of peroxisomes due to their unique metabolic properties. For example, the term glyoxysome was coined when a new type of organelle that contained enzymes of the glyoxylate cycle was identified from the endosperm of castor bean (Ricinus communis; Breidenbach et al., 1968). It was later realized that glyoxysomes are in fact a type of peroxisome, and Beevers (1979) subsequently classified plant peroxisomes into three subtypes based on their primary biochemical functions. Glyoxysomes are located in storage organs such as fatty seedling tissues and play a major role in converting fatty acids to sugar; leaf peroxisomes are involved in photorespiration; and nonspecialized peroxisomes exist in other plant tissues and perform unknown functions.The primary function of leaf peroxisomes is the recycling of phosphoglycolate during photorespiration, a process coordinated by chloroplasts, peroxisomes, mitochondria, and the cytosol. In this pathway, phosphoglycolate produced by the oxygenase activity of Rubisco is ultimately converted to glycerate, which reenters the chloroplastic Calvin-Benson cycle (Foyer et al., 2009; Peterhansel et al., 2010). The peroxisome-localized enzymes glycolate oxidase (GOX), catalase, aminotransferase (serine:glyoxylate aminotransferase [SGT] and glutamate-glyoxylate aminotransferase [GGT]), HYDROXYPYRUVATE REDUCTASE1 (HPR1), and peroxisomal malate dehydrogenase (PMDH) are involved in the process (Reumann and Weber, 2006). On the other hand, lipid mobilization through fatty acid β-oxidation and the glyoxylate cycle is the main function for peroxisomes in seeds and germinating seedlings. In this process, fatty acids are first activated into fatty acyl-CoA esters by the acyl-activating enzyme (AAE)/acyl-CoA synthetase before entering the β-oxidation cycle, during which an acetyl-CoA is cleaved in each cycle by the successive action of acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-keto-acyl-CoA thiolase (KAT). Acetyl-CoA, an end product of β-oxidation, is further converted to four-carbon carbohydrates by the glyoxylate cycle, in which isocitrate lyase (ICL) and malate synthase (MLS) are two key enzymes that function exclusively in this pathway. Products of the glyoxylate cycle exit the peroxisome, enter gluconeogenesis, and are further converted to hexose and Suc to fuel the postgerminative development of seedlings (Penfield et al., 2006).Immunocytochemical studies of germinating seeds from pumpkin (Cucurbita pepo), watermelon (Citrullis vulgaris), and cucumber (Cucumis sativus) demonstrated that seed peroxisomes (glyoxysomes) are directly transformed into leaf peroxisomes during greening of the cotyledons without de novo biogenesis of leaf peroxisomes (Titus and Becker, 1985; Nishimura et al., 1986; Sautter, 1986). This conversion was illustrated by the import of photorespiratory enzymes and their concomitant presence with glyoxylate cycle enzymes within the same organelle. Furthermore, the increase in abundance of photorespiratory enzymes coincided with the marked decrease, and subsequently the absence, of glyoxylate cycle enzymes (ICL and/or MLS) at the culmination of this process (Titus and Becker, 1985; Nishimura et al., 1986; Sautter, 1986). It was suggested that the specific names for plant peroxisomal variants should be eliminated because protein composition between leaf peroxisomes and glyoxysomes may differ by only two proteins (i.e. ICL and MLS) out of the over 100 total proteins in the peroxisome (Pracharoenwattana and Smith, 2008). This prediction needed to be tested. In addition, mutants lacking core peroxisome biogenesis factors or major β-oxidation enzymes are nonviable, suggesting that peroxisomes are essential to embryogenesis and seed germination (Hu et al., 2012). However, how peroxisomes contribute to seed germination and seedling establishment is not completely understood. In the past, studies have been successfully undertaken to catalog the proteome of mitochondria and plastids isolated from different plant tissues, which uncovered unique facets of organelle metabolism in various tissues (van Wijk and Baginsky, 2011; Havelund et al., 2013; Lee et al., 2013). As such, it was necessary to establish a protein atlas for peroxisomes in dark-grown seedlings.Proteomic analyses of leaf peroxisomes and peroxisomes from suspension-cultured, leaf-derived cells followed by protein subcellular localization studies confirmed a total of over 30 new peroxisomal proteins, uncovering additional metabolic functions for leaf peroxisomes (Fukao et al., 2002; Reumann et al., 2007, 2009; Eubel et al., 2008; Babujee et al., 2010; Kataya and Reumann, 2010; Quan et al., 2010). For Arabidopsis (Arabidopsis thaliana), around 100 peroxisomal proteins were shown to be present in leaves or leaf-derived cells. Compared with the over 80 bona fide peroxisomal proteins detected by leaf peroxisomal proteomics (Reumann et al., 2007, 2009), the number of proteins identified from peroxisomal proteomic studies on etiolated seedlings was significantly smaller, with less than 10 known peroxisomal proteins from Arabidopsis (Fukao et al., 2003) and approximately 31 from soybean (Glycine max; Arai et al., 2008a, 2008b). Thus, a more in-depth analysis of the proteome of peroxisomes from these tissues was highly needed.Here, we performed proteomic analysis of peroxisomes isolated from etiolated Arabidopsis seedlings and detected peroxisomal proteins that encompass most of the known plant peroxisomal metabolic pathways. Fluorescence microscopy verified the peroxisomal localization of a number of proteins newly identified in this study or detected from previous proteomics that had not been verified by independent means. Reverse genetic analysis demonstrated the role for a Cys protease in germination, β-oxidation, and growth.  相似文献   
285.
We have developed a novel technique for specific amplification of rare methylated DNA fragments in a high background of unmethylated sequences that avoids the need of bisulphite conversion. The methylation-dependent restriction enzyme GlaI is used to selectively cut methylated DNA. Then targeted fragments are tagged using specially designed ‘helper’ oligonucleotides that are also used to maintain selection in subsequent amplification cycles in a process called ‘helper-dependent chain reaction’. The process uses disabled primers called ‘drivers’ that can only prime on each cycle if the helpers recognize specific sequences within the target amplicon. In this way, selection for the sequence of interest is maintained throughout the amplification, preventing amplification of unwanted sequences. Here we show how the method can be applied to methylated Septin 9, a promising biomarker for early diagnosis of colorectal cancer. The GlaI digestion and subsequent amplification can all be done in a single tube. A detection sensitivity of 0.1% methylated DNA in a background of unmethylated DNA was achieved, which was similar to the well-established Heavy Methyl method that requires bisulphite-treated DNA.  相似文献   
286.
One of the persistent challenges of genetic association studies is the replication of genetic marker-disease associations across ethnic groups. Here, we conducted high-density association mapping of PARK2/PACRG SNPs with leprosy and identified 69 SNPs significantly associated with leprosy in 198 single-case Vietnamese leprosy families. A total of 56 associated SNPs localized to the overlapping promoter regions of PARK2/PACRG. For this region, multivariate analysis identified four SNPs belonging to two major SNP bins (rs1333955, rs7744433) and two single SNP bins (rs2023004, rs6936895) that capture the combined statistical evidence (P = 1.1 × 10?5) for association among Vietnamese patients. Next, we enrolled a case–control sample of 364 leprosy cases and 370 controls from Northern India. We genotyped all subjects for 149 SNPs that capture >80 % of the genetic variation in the Vietnamese sample and found 24 SNPs significantly associated with leprosy. Multivariate analysis identified three SNPs (rs1333955, rs9356058 and rs2023004) that capture the association with leprosy (P < 10?8). Hence, two SNPs (rs1333955 and rs2023004) were replicated by multivariate analysis between both ethnic groups. Marked differences in the linkage disequilibrium pattern explained some of the differences in univariate analysis between the two ethnic groups. In addition, the strength of association for two promoter region SNP bins was significantly stronger among young leprosy patients in the Vietnamese sample. The same trend was observed in the Indian sample, but due to the higher age-at-diagnosis of the patients the age effect was less pronounced.  相似文献   
287.
288.
Two new oleanane-type triterpene saponins, tarasaponin IV (1) and elatoside L (2), and four known; stipuleanoside R(2) (3), kalopanax-saponin F (4), kalopanax-saponin F methylester (5), and elatoside D (6) were isolated from the bark of Aralia elata. Kalopanax-saponin F methyl ester was isolated from nature for the first time. Their chemical structures were elucidated using the chemical and physical methods as well as good agreement with those of reported in the literature. Oleanane-type triterpene saponins are the main component of A. elata. All compounds were investigated the anti-inflammatory activity. We measured their inhibition of NF-κB and activation of PPARs activities in HepG2 cells using luciferase reporter system. As results, compounds 2 and 4 were found to inhibit NF-κB activation stimulated by TNFα in a dose-dependent manner with IC(50) values of 4.1 and 9.5 μM, respectively, when compared with that of positive control, sulfasalazine (0.9 μM). Compounds 2 and 4 also inhibited TNFα-induced expression of iNOS and COX-2 mRNA. Furthermore, compounds 1-6 were evaluated PPAR activity using PPAR subtype transactivation assays. Among of them, compounds 4-6 significantly increased PPARγ transactivation. However, compounds 4-6 did not activate in any other PPAR subtypes.  相似文献   
289.
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号