首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   15篇
  180篇
  2022年   2篇
  2021年   6篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   16篇
  2014年   15篇
  2013年   11篇
  2012年   14篇
  2011年   5篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   11篇
  2004年   4篇
  2003年   14篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有180条查询结果,搜索用时 0 毫秒
21.
22.
Lutein, a dietary carotenoid, selectively accumulates in human retina and brain. While many epidemiological studies show evidence of a relationship between lutein status and cognitive health, lutein’s selective uptake in human brain tissue and its potential function in early neural development and cognitive health have been poorly evaluated at a molecular level. The objective of this study was to evaluate the cross-sectional relationship between concentrations of brain lutein and StARD3 (identified as its binding protein in retinal tissue) among three age groups: infants (1–4 months, n = 10), older adults (55–86 years, n = 8), and centenarians (98–105 years, n = 10). Brain lutein concentrations were analyzed by high-performance liquid chromatography and StARD3 levels were analyzed by Western Blot analysis. The strong relationship in infant brains (r = 0.75, P < 0.001) suggests that lutein has a role in neural development. The relationship remained significant but weaker in older adults (r = 0.51, P < 0.05) and insignificant in centenarians (r = 0.08, P > 0.05), seven of whom had mild cognitive impairment (MCI) or dementia. These exploratory findings suggest an age-related decrease or abnormality of StARD3 activity in human brain. Given that StARD3 is also involved in cholesterol transportation, a process that is aberrant in neurodegenerative diseases, the potential protective function of lutein against these diseases remains to be explored.  相似文献   
23.
Hepatocyte susceptibility to glyoxal is dependent on cell thiamin content   总被引:1,自引:0,他引:1  
Glyoxal, a reactive dicarbonyl, is detoxified primarily by the glyoxalase system utilizing glutathione (GSH) and by the aldo-keto reductase enzymes which utilizes NAD[P]H as the co-factor. Thiamin (Vitamin B(1)) is an essential coenzyme for transketolase (TK) that is part of the pentose phosphate pathway which helps maintain cellular NADPH levels. NADPH plays an intracellular role in regenerating glutathione (GSH) from oxidized GSH (GSSG), thereby increasing the antioxidant defenses of the cell. In this study we have focused on the prevention of glyoxal toxicity by supplementation with thiamin (3mM). Thiamin was cytoprotective and restored NADPH levels, glyoxal detoxification and mitochondrial membrane potential. Hepatocyte reactive oxygen species (ROS) formation, lipid peroxidation and GSH oxidation were decreased. Furthermore, hepatocytes were made thiamin deficient with oxythiamin (3mM) as measured by the decreased hepatocyte TK activity. Under thiamin deficient conditions a non-toxic dose of glyoxal (2mM) became cytotoxic and glyoxal metabolism decreased; while ROS formation, lipid peroxidation and GSH oxidation was increased.  相似文献   
24.
25.
We investigated the peptides N-acetyl-AWYIK-amide and N-acetyl-VWYIK-amide corresponding to single amino acid substitutions in LWYIK, a segment found in the gp41 protein of HIV and believed to play a role in sequestering this protein to a cholesterol-rich domain in the membrane. The effects of these peptides on the thermotropic phase transitions of 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and mixtures of SOPC and cholesterol were intermediate between that having the wild-type sequence (LWYIK) and another (IWYIK), the least active peptide previously studied. This correlated with results from studies of single mutations in the gp41 protein of HIV-1, in which L679 of the LWYIK segment is replaced with either A or V, measuring the capability of TZM-BL HeLa-based HIV-1 indicator cells to form syncytia. The peptides were also comparatively analyzed in silico. All together, the results suggest that the mode of interaction of this region of gp41 with the polar heads of membrane lipids contributes to its cholesterol selectivity and that this is somehow related to the biological activity of the viral glycoprotein.  相似文献   
26.
27.
We hypothesized that in marginal thiamin deficiency intracellular alpha-oxoaldehydes form macromolecular adducts that could possibly be genotoxic in colon cells; and that in the presence of oxidative stress these effects are augmented because of decreased detoxification of these aldehydes. We have demonstrated that reduced dietary thiamin in F344 rats decreased transketolase activity and increased alpha-oxoaldehyde adduct levels. The methylglyoxal protein adduct level was not affected by oral glyoxal or methylglyoxal in the animals receiving thiamin at the control levels but was markedly increased in the animals on a thiamin-reduced diet. These observations are consistent with our suggestion that the induction of aberrant crypt foci with marginally thiamin-deficient diets may be a consequence of the formation of methylglyoxal adducts.  相似文献   
28.
Rotaviruses are a major cause of acute gastroenteritis in children worldwide. Early stages of rotavirus assembly in infected cells occur in viroplasms. Confocal microscopy demonstrated that viroplasms associate with lipids and proteins (perilipin A, ADRP) characteristic of lipid droplets (LDs). LD-associated proteins were also found to colocalize with viroplasms containing a rotaviral NSP5-enhanced green fluorescent protein (EGFP) fusion protein and with viroplasm-like structures in uninfected cells coexpressing viral NSP2 and NSP5. Close spatial proximity of NSP5-EGFP and cellular perilipin A was confirmed by fluorescence resonance energy transfer. Viroplasms appear to recruit LD components during the time course of rotavirus infection. NSP5-specific siRNA blocked association of perilipin A with NSP5 in viroplasms. Viral double-stranded RNA (dsRNA), NSP5, and perilipin A cosedimented in low-density gradient fractions of rotavirus-infected cell extracts. Chemical compounds interfering with LD formation (isoproterenol plus isobutylmethylxanthine; triacsin C) decreased the number of viroplasms and inhibited dsRNA replication and the production of infectious progeny virus; this effect correlated with significant protection of cells from virus-associated cytopathicity. Rotaviruses represent a genus of another virus family utilizing LD components for replication, pointing at novel therapeutic targets for these pathogens.Rotaviruses are a major cause of acute gastroenteritis in infants and young children, producing a high burden of disease worldwide and over 600,000 deaths per annum, mainly in developing countries (43). Recently, two live attenuated rotavirus vaccines (49, 58) have been licensed in various countries, and their widespread use in universal mass vaccination programs is being implemented (55).Rotaviruses form a genus of the Reoviridae family. They contain a genome of 11 segments of double-stranded RNA (dsRNA) encoding six structural proteins (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). After entry into the host cell the outer layer of the triple-layered particles (TLPs; infectious virions) is removed in endocytic vesicles, and the resulting double-layered particles (DLPs) actively transcribe mRNAs from the 11 RNA segments and release them into the cytoplasm. The mRNAs are translated into proteins but also act as templates for dsRNA synthesis (RNA replication). The early stages of viral morphogenesis and viral RNA replication occur in cytoplasmic inclusion bodies termed “viroplasms.” Partially assembled DLPs are released from viroplasms and receive their outer layer in the rough endoplasmic reticulum (RER), forming TLPs (for details, see Estes and Kapikian [20]).The rotavirus nonstructural proteins NSP2 and NSP5 are major components of viroplasms (20, 47). These two proteins alone are sufficient to induce the formation of viroplasm-like structures (VLS) (21). Blocking of either NSP2 or NSP5 in rotavirus-infected cells significantly reduces viroplasm formation and the production of infectious viral progeny (11, 54, 57). Until now, host cell proteins involved in viroplasm formation have not been identified.Morphological similarities between viroplasms and lipid droplets (LDs) prompted us to investigate their relationship. Both structures have phosphoproteins (NSP5 and perilipin A, respectively) inserted on their surface in ringlike shapes (16, 34). LDs are intracellular organelles involved in lipid and carbohydrate metabolism. They consist of a neutral lipid core surrounded by a phospholipid monolayer containing LD-associated proteins; those include proteins of the PAT family consisting of perilipin, adipophilin (adipose differentiation-related protein [ADRP]), and TIP-47 (9, 37). Lipolysis from LDs is regulated by hormones such as catecholamines, which trigger the phosphorylation of hormone-sensitive lipase (HSL) and perilipin A and induce LD fragmentation. Incubating adipocytes with the β-adrenergic agonist isoproterenol and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) activates this pathway (27, 34). LD formation can also be blocked by triacsin C, a specific inhibitor of long chain acyl coenzyme A synthetases (30, 39).We demonstrate here that rotavirus viroplasms colocalize with the LD-associated proteins perilipin A and ADRP and also with the lipids of LDs. These interactions appear to be required for the formation of functional viroplasms and the production of infectious viral progeny, since compounds dispersing LDs or blocking LD formation significantly decrease the number and size of viroplasms and the amount of infectious progeny. Taken together, these findings strongly suggest a critical role of LDs in rotavirus replication.  相似文献   
29.
Background: Metformin (an insulin sensitizer) and spironolactone (an antiandrogen) are both used for treatment of polycystic ovary syndrome. We analyzed the effect of 6 months of therapy with these drugs on body weight and glucose tolerance. Results: This was a retrospective analysis of polycystic ovarian syndrome (PCOS) cases on treatment. There were 88 patients with PCOS-42 were on metformin 1 g daily and 46 were taking spironolactone 50-75 mg daily. 21 of 42 had abnormal glucose tolerance (AGT) in the metformin group and 13 of 46 had AGT in the spironolactone group. Patients on metformin reported a greater reduction in body weight, whereas there was no change in body weight with spironolactone therapy (67.6-63.7 versus 59.6-59.2 kg). There was a significant reduction in the 1 and 2 h glucose and insulin levels with metformin therapy in those with AGT. However, fasting glucose increased in those with normal glucose tolerance. There was no change in either body weight or insulin levels with spironolactone. But, there was a significant reduction in both the 0 and 2 h glucose with spironolactone also in those with AGT. Conclusion: Spironolactone and metformin had similar effect in reducing the glucose levels in PCOS patients with AGT. PCOS patients with normal glucose tolerance had higher fasting plasma glucose at the end of 6 months of metformin therapy inspite of weight reduction.  相似文献   
30.
Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or more of limitations, such as relatively small insert size; unable to distinguish the junction of two ends; and/or low throughput. We developed a new approach, Cre-LoxP Inverse PCR Paired-End (CLIP-PE), which exploits the advantages of (1) Cre-LoxP recombination system to efficiently circularize large DNA fragments, (2) inverse PCR to enrich for the desired products that contain both ends of the large DNA fragments, and (3) the use of restriction enzymes to introduce a recognizable junction site between ligated fragment ends and to improve the self-ligation efficiency. We have successfully created CLIP-PE libraries up to 22 kb that are rich in informative read pairs and low in small fragment background. These libraries have demonstrated the ability to improve genome assemblies. The CLIP-PE methodology can be implemented with existing and future next-generation sequencing platforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号