首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7441篇
  免费   395篇
  国内免费   3篇
  2022年   87篇
  2021年   155篇
  2020年   100篇
  2019年   107篇
  2018年   152篇
  2017年   131篇
  2016年   211篇
  2015年   273篇
  2014年   319篇
  2013年   428篇
  2012年   490篇
  2011年   420篇
  2010年   286篇
  2009年   222篇
  2008年   303篇
  2007年   306篇
  2006年   239篇
  2005年   273篇
  2004年   210篇
  2003年   232篇
  2002年   200篇
  2001年   188篇
  2000年   157篇
  1999年   145篇
  1998年   72篇
  1997年   57篇
  1996年   48篇
  1995年   51篇
  1994年   49篇
  1992年   118篇
  1991年   89篇
  1990年   130篇
  1989年   98篇
  1988年   106篇
  1987年   94篇
  1986年   78篇
  1985年   90篇
  1984年   82篇
  1983年   62篇
  1982年   65篇
  1981年   87篇
  1980年   64篇
  1979年   94篇
  1978年   63篇
  1977年   66篇
  1976年   48篇
  1975年   60篇
  1974年   57篇
  1973年   49篇
  1972年   47篇
排序方式: 共有7839条查询结果,搜索用时 62 毫秒
61.
Summary The effect of calcium in the water relations and tolerance to moisture deficits was tested in groundnut and cowpea. In both species, enrichment of tissue with calcium resulted in maintenance of a higher water status under stress associated with low proline accumulation. The extent of membrane damage (as reflected by the absorbance at 273 nm) was lesser in leaves of plants fed with higher levels of Ca++ when subjected to simulated stress. The rate of water loss from the leaves of Ca++-enriched plants was also lower. The possible role of Ca++ in inducing membrane stability and maintenance of higher water status is discussed.  相似文献   
62.
The effects of ketoconazole, a lanosterol demethylase and cytochrome P450 inhibitor, on the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34, reductase) activity and sterol biosynthesis were studied in rat intestinal epithelial cell cultures (IEC-6). Incubation of cells with 0.15-2 microM ketoconazole resulted in a concentration-dependent inhibition of reductase activity. As the drug concentration approached 15 microM, the reductase activity returned to control values, and at 30 microM ketoconazole, a stimulation of enzyme activity was observed. The drug had no effect on reductase activity in homogenates of IEC-6 cells. Ketoconazole (0.15-30 microM) caused a concentration-dependent inhibition of the incorporation of [3H] mevalonolactone into cholesterol with a concomitant accumulation of radioactivity in methyl sterols; e.g. lanosterol and 24,25-epoxylanosterol. Interestingly, the incorporation of radioactivity into polar sterols showed a biphasic response which was inversely proportional to the biphasic response of reductase activity. Thus, incorporation of [3H]mevalonolactone into polar sterols increased at low concentrations of ketoconazole (0.15-2 microM) and decreased to control values at high concentrations of the drug. Treatment of cells with ketoconazole (30 microM) and [3H]mevalonolactone followed by removal of the drug and radiolabel resulted in an inhibition of reductase activity and a redistribution of radioactivity from lanosterol and 24,25-epoxylanosterol to cholesterol and polar sterols. These results suggested that the inhibition of reductase activity at low concentrations of ketoconazole (less than 2 microM) was due to a formation of regulatory polar sterols generated from the methyl sterols. At high concentrations of ketoconazole (30 microM) where no suppression in reductase activity was observed, the conversion of exogenously added [3H]24(S),25-epoxylanosterol to polar sterols was prevented. Exogenously added 24,25-epoxylanosterol inhibited reductase activity in a dose-dependent fashion, and ketoconazole (30 microM) prevented the inhibition caused by low concentrations of epoxylanosterol. The drug, however, was unable to prevent the dose-dependent suppression of reductase activity by 25-hydroxylanosterol, a reduced form of 24,25-epoxylanosterol. These results indicated that 24,25-epoxylanosterol per se was not an inhibitor of reductase activity but could be metabolized to regulatory polar sterols through a cytochrome P-450 dependent reaction which was sensitive to ketoconazole. Treatment of cells with ketoconazole totally abolished the inhibition of reductase activity by low density lipoprotein (LDL).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
63.
The patterns of puffing activity in polytene nuclei of salivary gland (SG) and midgut (MG) tissues of Melanagromyza obtusa have been studied after heat shock (HS), 2-4-dinitrophenol (DNP) or benzamide treatment. This study has revealed that HS and DNP treatments induced the same set of puffs but in a tissue-specific pattern. Benzamide treatment was found ineffective in inducing puffing activity. Some HS genes were also found to be more or less active during normal development, indicating some function in the normal metabolism of the cells.  相似文献   
64.
Structural studies using 500 MHz 1H NMR spectroscopy on Bam H1 recognition site d(GGATCC)2 in solution at 19 degrees is reported. The resonances from the sugar ring and base protons have been assigned from the 2D-COSY and NOESY spectra. Analyses of the NOESY cross-peaks between the base protons H8/H6 and sugar protons H2'/H2", H3' reveal that the nucleotide units G2, A3 and C6 adopt (C3'-endo, chi = 200 degrees-220 degrees) conformation while G1, T4 and C5 exhibit (C2'-endo, chi = 240 degrees-260 degrees) conformation. NMR data clearly suggest that the two strands of d(GGATCC)2 are conformationally equivalent and there is a structural two-fold between the two A-T pairs. The above information and the NOESY data are used to generate a structural model of d(GGATCC)2. The important features are: (i) G1-G2 stack, the site of cleavage, shows an alternation in sugar pucker i.e. C2'-endo, C3'-endo as in a B-A junction, (ii) G2-A3 stack adopts a mini A-DNA, both the sugars being C3'-endo, (iii) A3-T4 stack, the site of two-fold, displays an A-B junction with alternation in sugar pucker as C3'-endo, C2'-endo, (iv) T4-C5 stack adopts a mini B-DNA both the sugars being C2'-endo and (v) C5-C6 stack exhibits a B-A junction with C2'-endo, C3'-endo sugar puckers. Thus, our studies demonstrate that conformational microheterogeneity with a structural two fold, is present in the Bam H1 recognition site.  相似文献   
65.
Calcineurin was dissociated into subunits A and B by SDS and the dissociated subunits were separated by Sephadex G-100 column chromatography in SDS. The phosphatase activity was associated with the A subunit and was detected only in the presence of MnCl2 of the various divalent cations tested. The Mn2+-dependent phosphatase of A subunit was stimulated (4-5-fold) by calmodulin. The subunit B increased only modestly Mn2+ stimulated phosphatase activity of subunit A but markedly increased it when assay also contained calmodulin. These results support the view that subunit B plays an important role in Mn2+/calmodulin regulation of subunit A phosphatase activity. They also lend further support to our earlier postulate ([1984] FEBS Lett. 169, 251-255) that Mn2+ is a powerful regulator of calcineurin phosphatase.  相似文献   
66.
A new flavone, asplenetin, has been isolated from Launea asplenifolia and characterized as 5,7,3′,4′,5′-pentahydroxy-3-(3-methylbutyl)flavone. Its glycoside, asplenetin 5-O-neohesperidoside, is also reported.  相似文献   
67.
A crude enzyme preparation from mung bean cotyledons was separated into peroxidative and non-peroxidative IAA oxidase on a DEAE-cellulose column. Both fractions differed in their pH optima, Km and Vmax. The Km and Vmax of non-peroxidative IAA oxidase were higher than those of peroxidative IAA oxidase. Peroxidative IAA oxidase showed a linear increase in absorption at 247 and 254 nm after a short lag of 2–3 min. The addition of catalytic amounts of hydrogen peroxide eliminated the lag period and also enhanced the rate of IAA degradation. The non-peroxidative IAA oxidase fraction, however, did not exhibit any significant increase in absorption at 247 and 254 nm and showed a lag period of 5 min which was not affected by hydrogen peroxide. Instead, addition of the same catalytic amount of hydrogen peroxide inhibited the rate of IAA degradation. The peroxidative IAA oxidase fraction exhibited the reaction kinetics characteristic of peroxidase-catalysed IAA degradation. The rate of IAA oxidation by purified non-peroxidative IAA oxidase was very low. The slow rate of catalysis shown by non-peroxidative IAA oxidase appears to be due to the presence of inhibitor(s).  相似文献   
68.
69.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   
70.
Recent work has indicated that the H-2 histocompatibility complex on chromosome 17 influences the degree of glucocorticoid-induced teratogenicity and anti-inflammatory response. Since both of these hormonal actions appear to be mediated by the induction of phospholipase A2-inhibitory proteins (PLIP), the influence of the H-2 complex on the induction of PLIP by glucocorticoids in thymocytes and embryonic palates has been investigated. Analysis of dexamethasone-induced PLIP by Sephadex G-100 revealed four peaks of mol wt 55,000, 40,000, 28,000 and 15,000 in mouse thymocytes and from one to three of these PLIPs in mouse embryonic palates. The 55,000 mol wt PLIP comprised 50-60% of the total activity. The total amount of dexamethasone-induced PLIP is significantly higher in B10.A (H-2a) thymocytes than that in thymocytes of their congenic resistant partners, B10 (H-2b). The induced level of PLIP in the embryonic palates treated with dexamethasone is also significantly higher in the H-2a congenic strains with either the A or B background (AWy or B10.A) than that in their resistant partners (A.BY or B10). Thus, both susceptibility to glucocorticoid-induced cleft palate and the production of PLIP by this hormone are influenced by the H-2 complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号