首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   13篇
  2023年   1篇
  2022年   5篇
  2021年   15篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   2篇
  2016年   8篇
  2015年   9篇
  2014年   16篇
  2013年   24篇
  2012年   24篇
  2011年   25篇
  2010年   17篇
  2009年   8篇
  2008年   15篇
  2007年   34篇
  2006年   14篇
  2005年   26篇
  2004年   17篇
  2003年   19篇
  2002年   18篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1983年   2篇
  1980年   1篇
  1969年   1篇
排序方式: 共有345条查询结果,搜索用时 31 毫秒
311.
J Wu  N Shekhar  PP Lele  TP Lele 《PloS one》2012,7(8):e42854
The analysis of Fluorescence Recovery After Photobleaching (FRAP) experiments involves mathematical modeling of the fluorescence recovery process. An important feature of FRAP experiments that tends to be ignored in the modeling is that there can be a significant loss of fluorescence due to bleaching during image capture. In this paper, we explicitly include the effects of bleaching during image capture in the model for the recovery process, instead of correcting for the effects of bleaching using reference measurements. Using experimental examples, we demonstrate the usefulness of such an approach in FRAP analysis.  相似文献   
312.
Glycosaminoglycans (GAGs) such as chondroitin sulphate/dermatan sulphate (CS/DS) are complex molecules that are widely expressed on the cell membrane and extracellular matrix (ECM). They play an important role in wide range of biological activities especially during pathological conditions. Diabetes, a metabolic disorder characterized by sustained hyperglycemia, is known to affect GAGs in different tissues and affect erythrocyte adhesion. The present investigation was aimed at exploring the nature of GAGs present in erythrocytes and its role on adhesion of erythrocytes from control and diabetic rats to major extracellular matrix components. GAGs isolated from erythrocytes were demonstrated to be CS/DS and a 2-fold increase was observed in erythrocytes from diabetic rats. Disaccharide composition analysis by HPLC after depolymerization by the enzyme, chondroitinase ABC showed the presence of 4-O sulphated disaccharide units with small amounts of non-sulphated disaccharides, in both control and diabetic erythrocytes. Erythrocytes from diabetic rats, however, showed significantly increased binding to poly-l-ornithine (P-orn), type IV collagen, laminin and fibronectin, which was abrogated on treatment with chondroitinase ABC to various degrees. This study sheds new light on CS/DS in erythrocytes and its likely biological implications in vivo.  相似文献   
313.
The prevailing model suggests that cell fate after mitotic arrest depends on two independent and competing networks that control cyclin B1 degradation and the generation of death signals. However, recent evidence for Cdk1/cyclin B1-mediated phosphorylation and inactivation of antiapoptotic Bcl-2 proteins suggests the existence of significant cross-talk and interdependence between these pathways. Further, the nature of the mitotic death signals has remained elusive. In this study, we sought to test the hypothesis that fate after mitotic arrest is dictated by the robustness of Cdk1/cyclin B1 signaling to Bcl-2 proteins and to identify signals that may represent a mitotic death signature. We show that when treated with Taxol, slippage-resistant HT29 colon carcinoma cells display robust Cdk1 activity and extensive Mcl-1/Bcl-xL phosphorylation and die in mitosis, whereas slippage-prone DLD-1 colon carcinoma cells display weak Cdk1 activity and partial and transient Mcl-1/Bcl-xL phosphorylation and die in subsequent interphase or survive. Furthermore, modulation of this signaling axis, either by inhibition of Cdk1 in slippage-resistant HT29 or by enforcing mitotic arrest in slippage-prone DLD-1 cells, evokes a switch in fate, indicating that the strength of Cdk1 signaling to Bcl-2 proteins is a key determinant of outcome. These findings provide novel insight into the pathways that regulate mitotic death, suggest that the robustness of these signaling events may be useful as a marker to define susceptibility to antimitotic drugs, and encourage a revision in the current model describing fate after mitotic arrest.  相似文献   
314.
Previous data have suggested that insulin-resistant skeletal muscle may exhibit a diminished ability to undergo hypertrophy and that this result may be mediated, at least in part, from decrements in mammalian target of rapamycin (mTOR) signaling (Katta A, Kundla S, Kakarla SK, Wu M, Fannin J, Paturi S, Liu H, Addagarla HS, Blough ER. Am J Physiol Regul Integr Comp Physiol 299: R1666-R1675, 2010). Herein, we attempt to extend these observations by determining if this attenuation in muscle growth is associated with alterations in AMP-activated protein kinase (AMPK) signaling, an upstream mediator of mTOR, and changes in the activation of dsRNA-dependent protein kinase (PKR), which functions as an inhibitor of protein synthesis and potential mediator of protein degradation. Compared with that observed in lean Zucker (LZ) rats, the phosphorylation of AMPKα at Thr172 was higher after 3 wk of overload in the insulin-resistant obese Zucker (OZ) soleus (P < 0.05). This change in AMPKα phosphorylation was accompanied by increases in the amount of phosphorylated PKR (Thr446), elevations in the PKR-dependent phosphorylation of eukaryotic initiation factor (eIF)-2α (Ser51), augmented p38 MAP kinase (Thr180/Tyr182) phosphorylation, and increases in the amount of protein ubiquitination (P < 0.05). Taken together, these results suggest that the diminished hypertrophic response we observe in the OZ rat may be mediated, at least in part, by the hyperactivation of AMPK- and PKR-related signaling.  相似文献   
315.
BackgroundMesenchymal stem cells (MSCs) have paradoxically been reported to exert either pro- or anti-tumor effects in vitro. Hyperthermia, in combination with chemotherapy, has tumor-inhibiting effects; however, its role, together with MSCs, so far is not well understood. Furthermore, a lot of research is conducted using conventional 2-dimensional in vitro models that do not mimic the actual tumor microenvironment.AimIn light of this fact, an indirect method of co-culturing human amniotic membrane-derived MSCs (AMMSCs) with collagen-encapsulated human lung carcinoma cells (A549) was performed using a 3-dimensional (3D) tumor-on-chip device.MethodsThe conditioned medium of AMMSCs (AMMSC-CM) or heat-treated AMMSCs (heat-AMMSC-CM) was utilized to create indirect co-culture conditions. Tumor spheroid growth characterization, immunocytochemistry and cytotoxicity assays, and anti-cancer peptide (P1) screening were performed to determine the effects of the conditioned medium.ResultsThe A549 cells cultured inside the 3D microfluidic chip developed into multicellular tumor spheroids over five days of culture. The AMMSC-CM, contrary to previous reports claiming its tumor-inhibiting potential, led to significant proliferation of tumor spheroids. Heat-AMMSC-CM led to reductions in both spheroid diameter and cell proliferation. The medium containing the P1 peptide was found to be the least cytotoxic to tumor spheroids in co-culture compared with the monoculture and heat-co-culture groups.ConclusionsHyperthermia, in combination with the anticancer peptide, exhibited highest cytotoxic effects. This study highlights the growing importance of 3D microfluidic tumor models for testing stem-cell-based and other anti-cancer therapies.  相似文献   
316.
Simocephalus vetulus is a large (2.0–4.0 mm at maturity) cladoceran often found in the littoral region of lakes and ponds, and capable of moderate growth rates even on poor‐quality cyanobacterial diets. It frequently co‐occurs with fishes and similar sized ostracods such as Heterocypris incongruens, but little is known of its response to fish kairomones or its interactions with potential competitors. We studied the demographic responses of S. vetulus fed the green alga Scenedesmus acutus, Microcystis cf. aeruginosa strain A, Microcystis cf. aeruginosa strain B, or Limnothrix sp. Experiments were conducted separately and together in the presence of Heterocypris incongruens and cichlid fish (Oreochromis) kairomones. A diet of Limnothrix sp. resulted in the lowest population growth rate (0.21±0.023 d?1), while on diets of S. acutus or Microcystis, population growth was higher (0.30±0.009 d?1). The presence of ostracods resulted in significantly higher growth rates of S. vetulus fed Limnothrix (0.33±0.01 d?1), but not Microcystis or S. acutus. Regardless of the diet, the presence of fish kairomones resulted in significantly higher growth rates as compared with controls, particularly when ostracods were also present. Coexistence with ostracods may be beneficial to S. vetulus, particularly when food quality is poor.  相似文献   
317.
318.
The Notch signaling pathway, a known regulator of cell fate decisions, proliferation, and apoptosis, has recently been implicated in the regulation of glycolysis, which affects tumor progression. However, the impact of Notch on other metabolic pathways remains to be elucidated. To gain more insights into the Notch signaling and its role in regulation of metabolism, we studied the mitochondrial proteome in Notch1-activated K562 cells using a comparative proteomics approach. The proteomic study led to the identification of 10 unique proteins that were altered due to Notch1 activation. Eight of these proteins belonged to mitochondria-localized metabolic pathways like oxidative phosphorylation, glutamine metabolism, Krebs cycle, and fatty acid oxidation. Validation of some of these findings showed that constitutive activation of Notch1 deregulated glutamine metabolism and Complex 1 of the respiratory chain. Furthermore, the deregulation of glutamine metabolism involved the canonical Notch signaling and its downstream effectors. The study also reports the effect of Notch signaling on mitochondrial function and status of high energy intermediates ATP, NADH, and NADPH. Thus our study shows the effect of Notch signaling on mitochondrial proteome, which in turn affects the functioning of key metabolic pathways, thereby connecting an important signaling pathway to the regulation of cellular metabolism.  相似文献   
319.
320.
The reversible regulation of myosin light chain phosphatase (MLCP) in response to agonist stimulation and cAMP/cGMP signals plays an important role in the regulation of smooth muscle (SM) tone. Here, we investigated the mechanism underlying the inhibition of MLCP induced by the phosphorylation of myosin phosphatase targeting subunit (MYPT1), a regulatory subunit of MLCP, at Thr-696 and Thr-853 using glutathione S-transferase (GST)-MYPT1 fragments having the inhibitory phosphorylation sites. GST-MYPT1 fragments, including only Thr-696 and only Thr-853, inhibited purified MLCP (IC50 = 1.6 and 60 nm, respectively) when they were phosphorylated with RhoA-dependent kinase (ROCK). The activities of isolated catalytic subunits of type 1 and type 2A phosphatases (PP1 and PP2A) were insensitive to either fragment. Phospho-GST-MYPT1 fragments docked directly at the active site of MLCP, and this was blocked by a PP1/PP2A inhibitor microcystin (MC)-LR or by mutation of the active sites in PP1. GST-MYPT1 fragments induced a contraction of β-escin-permeabilized ileum SM at constant pCa 6.3 (EC50 = 2 μm), which was eliminated by Ala substitution of the fragment at Thr-696 or by ROCK inhibitors or 8Br-cGMP. GST-MYPT1-(697–880) was 5-times less potent than fragments including Thr-696. Relaxation induced by 8Br-cGMP was not affected by Ala substitution at Ser-695, a known phosphorylation site for protein kinase A/G. Thus, GST-MYPT1 fragments are phosphorylated by ROCK in permeabilized SM and mimic agonist-induced inhibition and cGMP-induced activation of MLCP. We propose a model in which MYPT1 phosphorylation at Thr-696 and Thr-853 causes an autoinhibition of MLCP that accounts for Ca2+ sensitization of smooth muscle force.The contractile state of smooth muscle (SM)3 is driven by phosphorylation of the regulatory myosin light chain and reflects the balance of the Ca2+-calmodulin-dependent myosin light chain kinase and myosin light chain phosphatase (MLCP) activities (1). The stoichiometry between force and [Ca2+] varies with different agonists (2), reflecting other signaling pathways that modulate the MLCP or myosin light chain kinase activities (35). Agonist activation of G-protein-coupled receptors triggers Ca2+ release from the sarcoplasmic reticulum. Simultaneously, G-protein-coupled receptor signals are mediated by Ca2+-independent phospholipase A2 (6) and initiate kinase signals, such as PKC, phosphoinositide 3-kinase (7), and ROCK. These lead to inhibition of MLCP activity resulting in an increase in regulatory myosin light chain phosphorylation independent of a change in Ca2+ (Ca2+ sensitization) (for review, see Ref. 1). K+ depolarization can also activate RhoA in a Ca2+-dependent manner (8). Conversely, Ca2+ desensitization occurs when nitric oxide production and the activation of Gas elevate cGMP and cAMP levels in SM, leading to dis-inhibition and restoration of MLCP activity (915). Thus, MLCP plays a pivotal role in controlling phosphorylation of myosin, in response to physiological stimulation.MLCP is a trimeric holoenzyme consisting of a catalytic subunit of protein phosphatase 1 (PP1) δ isoform and a regulatory complex of MYPT1 and an accessory M21 subunit (16). A PP1 binding site, KVKF38, is located at the N terminus of MYPT1 followed by an ankyrin-repeat domain. This N-terminal domain forms a part of the active site together with the catalytic subunit and controls the substrate specificity via allosteric interaction and targeting to loci (17). The C-terminal region of MYPT1 directly binds to substrates such as myosin and ezrin/radixin/moecin proteins as well as, under some conditions, the plasma membrane, tethering the catalytic subunit to multiple targets (18, 19). Furthermore, MYPT1 is involved in the regulation of MLCP activity. Alternative splicing of MYPT1 occurs in SM depending on the tissue and the developmental stage (20). An exon 13 splicing of MYPT1 is involved in Ca2+ sensitization that occurs in response to GTP (21), whereas a splice variant of MYPT1, containing the C-terminal Leu-zipper sequence, correlates with cGMP-dependent relaxation of smooth muscle (22). Direct binding of PKG to MYPT1 at the Leu-zipper domain and/or Arg/Lys-rich domain is involved in the activation of MLCP (2325). In addition, a myosin phosphatase-Rho interacting protein (M-RIP) is directly associated with the MYPT1 C-terminal domain, proposed to recruit RhoA to the MLCP complex (26). The C-terminal region also binds to ZIP kinase, which phosphorylates MYPT1 at Thr-6964 (27). Thus, the C-terminal domain of MYPT1 functions as a scaffold for multiple phosphatase regulatory proteins.Phosphorylation of MYPT1 at Thr-696 and Thr-853 and the phosphatase inhibitory protein CPI-17 at Thr-38 play dominant roles in the agonist-induced inhibition of MLCP (18, 2834), yet the molecular mechanism(s) of MYPT1 inhibitory phosphorylation is poorly understood. Receptor activation induces biphasic contraction of SM, reflecting a sequential activation of PKC and ROCK. Phosphorylation of CPI-17 occurs first in parallel with Ca2+ release and the activation of a conventional PKC that causes Ca2+-dependent Ca2+ sensitization (35). A delayed activation of ROCK increases the phosphorylation of MYPT1 at Thr-853. These phosphorylation events maintain the sustained phase of contraction after the fall in [Ca2+]i (35). Phosphorylation of MYPT1 at Thr-853 is elevated in response to various agonists (35, 36). Unlike the Thr-853 site, phosphorylation of MYPT1 at Thr-696 is often spontaneously phosphorylated under resting conditions and insensitive to stimuli with most agonists (36). Nonetheless, up-regulation of MYPT1 phosphorylation at Thr-696 is reported in some types of hypertensive animals and patients, suggesting an importance of the site under pathological conditions (3739). Phosphorylation of CPI-17 and MYPT1 at Thr-696 is reversed in response to nitric oxide production and cGMP elevation, which parallels relaxation (14, 15). Upon cGMP elevation, MYPT1 at Ser-695 is phosphorylated, and the Ser phosphorylation blocks the adjacent phosphorylation at Thr-696, causing dis-inhibition of MLCP (27, 40). However, Ser-695 phosphorylation does not cause the dephosphorylation at Thr-696 in intact cerebral artery (41). Thus, phosphorylation of MYPT1 governs Ca2+ sensitization and desensitization of SM, although the underlying mechanisms are still controversial. In addition, telokin, a dominant protein in visceral and phasic vascular SM tissues, is phosphorylated by PKG and PKA, activating MLCP by an unknown mechanism and inducing SM relaxation (42).Multiple mechanisms have been suggested for the phosphorylation-dependent inhibition of MLCP. Thiophosphorylation of MYPT1 results in lower Vm and higher Km values of MLCP activity, suggesting that allosteric modulation of the active site is necessary for the thiophosphorylation-dependent inhibition of MLCP (43). On the other hand, translocation of MYPT1 to the plasma membrane region occurs in parallel with the phosphorylation of MYPT1 at Thr-696 (44, 45), but the amount translocated and the functional meaning remain controversial (41). Phosphorylation of MYPT1 at Thr-853 in vitro reduces its affinity for phospho-myosin, thus suppressing the phosphatase activity (18). It has also been demonstrated that reconstitution of thiophosphorylated MYPT1 at Thr-696 or Thr-853 with isolated PP1δ produces a less-active form of MLCP complex (46). This supports the kinetic analysis (43) that suggests an allosteric effect of MYPT1 phosphorylation on the phosphatase activity. In contrast, a thiophosphopeptide mimicking the phosphorylation site of MBS85, a homolog of MYPT1 and not present in SM, inhibits the activity of MBS85·PP1 complex, suggesting the direct interaction between the MBS85 site and PP1 (47). In the crystal structure model of MYPT1-(1–229). PP1δ complex, the electrostatic potential map at the MLCP active site complements amino acid profiles around the phosphorylation sites (17). Therefore, it is possible that the inhibitory phosphorylation sites directly dock at the active site of MLCP and inhibit the activity. Here, we examine mechanisms underlying the inhibition of MLCP through the phosphorylation of MYPT1 at Thr-696 and Thr-853 using GST fusion versions of various MYPT1 fragments including or excluding either or both of these phosphorylation sites. Phosphorylated MYPT1 fragments including either Thr-696 or Thr-853 potently and specifically inhibit MLCP purified from pig aorta and the enzyme associated with myofilaments in permeabilized ileum SM tissues. We further show that inhibition of MLCP in SM tissues is eliminated by activation of PKA/PKG, suggesting that the GST-MYPT1 fragments mimic agonist-induced autoinhibition and cAMP/cGMP-dependent dis-autoinhibition of MLCP in SM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号