首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   33篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   18篇
  2012年   26篇
  2011年   23篇
  2010年   16篇
  2009年   15篇
  2008年   17篇
  2007年   21篇
  2006年   21篇
  2005年   11篇
  2004年   20篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   10篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
31.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.  相似文献   
32.
The biochemical aspects of the initiation of DNA replication in Mycobacterium avium are unknown. As a first step towards understanding this process, M. avium DnaA protein, the counterpart of Escherichia coli replication initiator protein, was overproduced in E. coli with an N-terminal histidine tag and purified to homogeneity on a nickel affinity column. The recombinant DnaA protein bound both ATP and ADP with high affinity and showed a weak ATPase activity. ADP, following the hydrolysis of ATP, remained bound to the protein strongly and the exchange of ATP for bound ADP was found to be weak. Acidic phospholipids such as phosphatidylinositol, phosphatidylglycerol, and cardiolipin, promoted the dissociation of ADP from the DnaA protein, whereas the neutral phospholipid, phosphatidylethanolamine, did not. The phospholipid promoted dissociation of ADP from DnaA protein was stimulated in the presence of the M. avium origin of replication. We suggest that the initiation of DNA replication in M. avium involves an interplay among DnaA, adenine nucleotides and phospholipids.  相似文献   
33.
In our endeavor to design and synthesize novel anticancer agents, a new series of indoloquinazoline compounds were prepared and tested initially for anticancer activity in vitro against a panel of human cancer cell lines. Most of these compounds exhibited cytotoxic activity in in vitro screens. Compounds were selected and further evaluated using a modified Hollow Fiber Assay for their preliminary in vivo activity against 12 cell lines implanted in the subcutaneous and intraperitoneal compartments in mice. The results indicate that these compounds may constitute a new class of anticancer agents.  相似文献   
34.
Rajagopalan PT  Lutz S  Benkovic SJ 《Biochemistry》2002,41(42):12618-12628
Recently, the participation in catalysis of residues spatially removed from the enzyme's active site has received considerable attention. The influence of the distal Gly-121 residue on the chemical step of hydride transfer in dihydrofolate reductase (DHFR) catalysis had been demonstrated previously [Cameron, C. E., and Benkovic, S. J. (1997) Biochemistry 36, 15792-15800]. In our continuing effort to identify catalytically important residues that are distal from the active site, we used sequence conservation information, kinetic data on site-directed mutants, dynamic motion information from NMR methods, and correlated motions from MD simulations to identify a subset of residues. Among them, the region spanning positions 41-45 is distal to the active site and was chosen as the focus for the mutagenesis and kinetic studies reported here. Specifically, the highly conserved Met-42 was selected for site-directed mutagenesis. While the reaction kinetics for the M42F mutant enzyme did not deviate from wild-type behavior, a 41-fold reduction in the forward hydride transfer rate was found for the M42W mutant. Given the established role of Gly-121 in the hydride transfer process, double mutant enzymes involving positions 42 and 121 were constructed and characterized. These double mutant enzymes generally showed little changes in substrate and cofactor binding but synergistic decreases in forward hydride transfer rates, while the decreases in reverse rates were additive. Along with supporting information from mixed quantum/classical MD simulations [Agarwal, P. K., Billeter, S. R., Rajagopalan, P. T., Benkovic, S. J., and Hammes-Schiffer, S. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 2794-2799], the data suggest that a coupled dynamic motion of these distal residues enhances crossing of the chemical reaction barrier and imply an expanded nonstatic role for the protein fold in catalysis.  相似文献   
35.
A two-step protocol has been developed for isolation of plasmids from recombinant mycobacteria via Escherichia coli. First either mycobacterial primary transformants or propagated cultures were lysed in a mini-bead beater using zirconia beads and the lysate thus obtained was used to transform E. coli recA mutant cells. Secondly, plasmid DNA was isolated from recombinant E. coli cells and analysed. Bead beating times of 2 min for Mycobacterium smegmatis, a rapid grower, and 4 min for M. bovis BCG, a slow grower, were found to be optimal for recovery of plasmid DNA. This protocol was also amenable to other mycobacterial species such as M. avium, M. fortuitum and M. tuberculosis H37Ra. Plasmid recovery from the recombinant M. bovis BCG using this protocol is approximately 300-fold higher than that reported for the electroduction method.  相似文献   
36.
Crossing the midline: roles and regulation of Robo receptors   总被引:12,自引:0,他引:12  
In the Drosophila CNS, the midline repellent Slit acts at short range through its receptor Robo to control midline crossing. Longitudinal axons express high levels of Robo and avoid the midline; commissural axons that cross the midline express only low levels of Robo. Robo levels are in turn regulated by Comm. Here, we show that the Slit receptors Robo2 and Robo3 ensure the fidelity of this crossing decision: rare crossing errors occur in both robo2 and robo3 single mutants. In addition, low levels of either Robo or Robo2 are required to drive commissural axons through the midline: only in robo,robo2 double mutants do axons linger at the midline as they do in slit mutants. Robo2 and Robo3 levels are also tightly regulated, most likely by a mechanism similar to but distinct from the regulation of Robo by Comm.  相似文献   
37.
Rajagopalan S  Vivancos V  Nicolas E  Dickson BJ 《Cell》2000,103(7):1033-1045
On each side of the midline of the Drosophila CNS, axons are organized into a series of parallel pathways. Here we show that the midline repellent Slit, previously identified as a short-range signal that regulates midline crossing, also functions at long range to pattern these longitudinal pathways. In this long-range function, Slit signals through the receptors Robo2 and Robo3. Axons expressing neither, one, or both of these receptors project in one of three discrete lateral zones, each successively further from the midline. Loss of robo2 or robo3 function repositions axons closer to the midline, while gain of robo2 or robo3 function shifts axons further from the midline. Local cues further refine the lateral position. Together, these long- and short-range guidance cues allow growth cones to select with precision a specific longitudinal pathway.  相似文献   
38.
Resonance Raman spectroscopy has been used to define active site structures for oxidized Mo(VI) and reduced Mo(IV) forms of recombinant Rhodobacter sphaeroides biotin sulfoxide reductase expressed in Escherichia coli. On the basis of (18)O/(16)O labeling studies involving water and the alternative substrate dimethyl sulfoxide and the close correspondence to the resonance Raman spectra previously reported for dimethyl sulfoxide reductase (Garton, S. D., Hilton, J., Oku, H., Crouse, B. R., Rajagopalan, K. V., and Johnson, M. K. (1997) J. Am. Chem. Soc. 119, 12906-12916), vibrational modes associated with a terminal oxo ligand and the two molybdopterin dithiolene ligands have been assigned. The results indicate that the enzyme cycles between mono-oxo-Mo(VI) and des-oxo-Mo(IV) forms with both molybdopterin dithiolene ligands remaining coordinated in both redox states. Direct evidence for an oxygen atom transfer mechanism is provided by (18)O/(16)O labeling studies, which show that the terminal oxo group at the molybdenum center is exchangeable with water during redox cycling and originates from the substrate in substrate-oxidized samples. Biotin sulfoxide reductase is not reduced by biotin or the nonphysiological products, dimethyl sulfide and trimethylamine. However, product-induced changes in the Mo=O stretching frequency provide direct evidence for a product-associated mono-oxo-Mo(VI) catalytic intermediate. The results indicate that biotin sulfoxide reductase is thermodynamically tuned to catalyze the reductase reaction, and a detailed catalytic mechanism is proposed.  相似文献   
39.
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.  相似文献   
40.
The septal association of Mycobacterium tuberculosis MtrB, the kinase partner of the MtrAB two-component signal transduction system, is necessary for the optimal expression of the MtrA regulon targets, including ripA, fbpB, and ftsI, which are involved in cell division and cell wall synthesis. Here, we show that MtrB, irrespective of its phosphorylation status, interacts with Wag31, whereas only phosphorylation-competent MtrB interacts with FtsI. We provide evidence that FtsI depletion compromises the MtrB septal assembly and MtrA regulon expression; likewise, the absence of MtrB compromises FtsI localization and, possibly, FtsI activity. We conclude from these results that FtsI and MtrB are codependent for their activities and that FtsI functions as a positive modulator of MtrB activation and MtrA regulon expression. In contrast to FtsI, Wag31 depletion does not affect MtrB septal assembly and MtrA regulon expression, whereas the loss of MtrB increased Wag31 localization and the levels of PknA/PknB (PknA/B) serine-threonine protein kinase-mediated Wag31 phosphorylation. Interestingly, we found that FtsI decreased levels of phosphorylated Wag31 (Wag31∼P) and that MtrB interacted with PknA/B. Overall, our results indicate that MtrB interactions with FtsI, Wag31, and PknA/B are required for its optimal localization, MtrA regulon expression, and phosphorylation of Wag31. Our results emphasize a new role for MtrB in cell division and cell wall synthesis distinct from that regulating the MtrA phosphorylation activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号