首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   33篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   18篇
  2012年   26篇
  2011年   23篇
  2010年   16篇
  2009年   15篇
  2008年   17篇
  2007年   21篇
  2006年   21篇
  2005年   11篇
  2004年   20篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   10篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有436条查询结果,搜索用时 15 毫秒
151.
152.
Methods have been devised to examine the spectral properties and state of reduction of the pterin ring of molybdopterin (MPT) in milk xanthine oxidase and the Mo-containing domain of rat liver sulfite oxidase. The absorption spectrum of the native pterin was visualized by difference spectroscopy of each protein, denatured anaerobically in 6 M guanidine hydrochloride (GdnHCl), versus a sample containing the respective apoprotein and other necessary components. The state of reduction of MPT was also probed using 2,6-dichlorobenzenoneindophenol (DCIP) to measure reducing equivalents/MPT, after anaerobic denaturation of the protein in GdnHCl in the presence or absence of Hg2+. In the case of xanthine oxidase the data indicate that the terminal sulfide ligand of Mo causes the reduction of a native dihydro form of MPT to the tetrahydro level. This reduction does not occur if Hg2+ is added prior to denaturation of the protein. Based on its observed behavior, the native MPT in the Mo cofactor of xanthine oxidase is postulated to exist as a quinonoid dihydropterin. Quantitation of DCIP reduction by MPT of Mo fragment of sulfite oxidase showed a two-electron oxidation of MPT, even when the Mo fragment was denatured in the presence of Hg2+ to prevent internal reduction reactions due to sulfhydryls or sulfide. Difference spectra of DCIP-treated versus untreated Mo fragment showed that MPT had been fully oxidized. These data indicate that the native MPT in sulfite oxidase must be a dihydro isomer different from that in xanthine oxidase.  相似文献   
153.
31P NMR spectroscopy has been utilized in conjunction with site-directed mutagenesis and phospholipid analysis to determine structural aspects of the prosthetic flavins, FAD and FMN, of NADPH-cytochrome P450 reductase. Comparisons are made among detergent-solubilized and protease (steapsin)-solubilized preparations of porcine liver reductases, showing unequivocally that the 31P NMR signals at approximately 0.0 ppm in the detergent-solubilized, hydrophobic form are attributable to phospholipids. By extraction and TLC analysis, the phospholipid contents of detergent-solubilized rat liver reductase, both tissue-purified and Escherichia coli-expressed, have been determined to reflect the membranes from which the enzyme was extracted. In addition, the cloned, wild-type NADPH-cytochrome P450 reductase exhibits an additional pair of signals downfield of the normal FAD pyrophosphate resonances reported by Otvos et al. [(1986) Biochemistry 25, 7220-7228], but these signals are not observed with tissue-purified or mutant enzyme preparations. The Tyr140----Asp140 mutant, which exhibits only 20% of wild-type activity, displays no gross changes in 31P NMR spectra. However, the Tyr178----Asp178 mutant, which has no catalytic activity and does not bind FMN, exhibits no FMN 31P NMR signal and a normal, but low intensity, pair of signals for FAD. The latter experiments, taking advantage of mutations in residues putatively on either side of the FMN isoalloxazine ring, suggest subtle to severe changes in the binding of the flavin prosthetic groups and, perhaps, cooperative interactions of flavin binding to NADPH-cytochrome P450 reductase.  相似文献   
154.
The regulators of Mycobacterium tuberculosis DNA replication are largely unknown. Here, we demonstrate that in synchronously replicating M. tuberculosis, MtrA access to origin of replication (oriC) is enriched in the post‐replication (D) period. The increased oriC binding results from elevated MtrA phosphorylation (MtrA~P) as evidenced by reduced expression of dnaN, dnaA and increased expression of select cell division targets. Overproduction of gain‐of‐function MtrAY102C advanced the MtrA oriC access to the C period, reduced dnaA and dnaN expression, interfered with replication synchrony and compromised cell division. Overproduction of wild‐type (MtrA+) or phosphorylation‐defective MtrAD56N did not promote oriC access in the C period, nor affected cell cycle progression. MtrA interacts with DnaA signaling a possibility that DnaA helps load MtrA on oriC. Therefore, oriC sequestration by MtrA~P in the D period may normally serve to prevent untimely initiations and that DnaA–MtrA interactions may facilitate regulated oriC replication. Finally, despite the near sequence identity of MtrA in M. smegmatis and M. tuberculosis, the M. smegmatis oriC is not MtrA‐target. We conclude that M. tuberculosis oriC has evolved to be regulated by MtrA and that cell cycle progression in this organisms are governed, at least in part, by oscillations in the MtrA~P levels.  相似文献   
155.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is an autosomal recessive degenerative disorder caused by a GAA triplet expansion or point mutations in the FRDA gene on chromosome 9q13. The FRDA gene product, frataxin, is a widely expressed mitochondrial protein, which is severely reduced in FRDA patients. The demonstration that deficit of frataxin in FRDA is associated with mitochondrial iron accumulation, increased sensitivity to oxidative stress, deficit of respiratory chain complex activities and in vivo impairment of cardiac and skeletal muscle tissue energy metabolism, has established FRDA as a "new" nuclear encoded mitochondrial disease. Pilot studies have shown the potential effect of antioxidant therapy based on idebenone or coenzyme Q 10 plus Vitamin E administration in this condition and provide a strong rationale for designing larger randomized clinical trials.  相似文献   
156.

Background

The development of insulin resistance (IR) in mouse models of obesity and type 2 diabetes mellitus (DM) is characterized by progressive accumulation of inflammatory macrophages and subpopulations of T cells in the visceral adipose. Regulatory T cells (Tregs) may play a critical role in modulating tissue inflammation via their interactions with both adaptive and innate immune mechanisms. We hypothesized that an imbalance in Tregs is a critical determinant of adipose inflammation and investigated the role of Tregs in IR/obesity through coordinated studies in mice and humans.

Methods and Findings

Foxp3-green fluorescent protein (GFP) “knock-in” mice were randomized to a high-fat diet intervention for a duration of 12 weeks to induce DIO/IR. Morbidly obese humans without overt type 2 DM (n = 13) and lean controls (n = 7) were recruited prospectively for assessment of visceral adipose inflammation. DIO resulted in increased CD3+CD4+, and CD3+CD8+ cells in visceral adipose with a striking decrease in visceral adipose Tregs. Treg numbers in visceral adipose inversely correlated with CD11b+CD11c+ adipose tissue macrophages (ATMs). Splenic Treg numbers were increased with up-regulation of homing receptors CXCR3 and CCR7 and marker of activation CD44. In-vitro differentiation assays showed an inhibition of Treg differentiation in response to conditioned media from inflammatory macrophages. Human visceral adipose in morbid obesity was characterized by an increase in CD11c+ ATMs and a decrease in foxp3 expression.

Conclusions

Our experiments indicate that obesity in mice and humans results in adipose Treg depletion. These changes appear to occur via reduced local differentiation rather than impaired homing. Our findings implicate a role for Tregs as determinants of adipose inflammation.  相似文献   
157.
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins.  相似文献   
158.
An endo-acting xylanase is isolated from the culture medium of Clostridium sp. BOH3 when xylan, glucose, xylose, or sugarcane bagasse hydrolysate (SBH) is used as a carbon source. Crude xylanase is purified by using an anionic Q-column with a yield of 39 %. The pure xylanase has a molecular weight of 35.8 kDa, and it shows optimal activity at pH 5 and 60 °C. When beechwood xylan is used as a substrate, this xylanase liberates short oligosaccharides (XOS) predominantly, ranging from xylobiose (X2) to xylopentaose (X5). However, no xylose can be detected, suggesting that this is an endo-β-1,4-xylanase. Kinetic study of this xylanase reveals that K m and V max are 1.36 mg/ml and 212 μmol/(min. mg protein), respectively. On the basis of amino acid sequence, this enzyme shows homology to xylanase (xynb) from Clostridium acetobutylicum ATCC 824, but this enzyme has several distinctive characteristics. For example, its activity can be enhanced with the addition of divalent metal ions, and it produces XOS exclusively when xylan is used as a substrate. These unique characteristics suggest that this is a new enzyme.  相似文献   
159.
Most proteins encoded by the nuclear genome are synthesized in the cytoplasm and fold into precise 3D structures. During synthesis, the nascent polypeptide begins to fold as it traverses the large subunit of the ribosome and is assisted by molecular chaperones in attaining its precise folded/highly ordered state efficiently and in a biologically relevant timescale. Proteins that are misfolded are culled, re-routed, and marked by mechanisms such as ubiquitinylation for degradation ensuring strict quality control (QC). In addition to the highly ordered "globular" proteins, emerging evidence indicates that a large fraction of the proteome also comprises the so-called "Intrinsically Disordered Proteins" (IDPs). IDPs are proteins that lack rigid 3D structures and instead, exist as dynamic ensembles. The dynamic structures in the IDPs have many similarities with "normal" globular proteins such as the native (ordered), and non-native (molten globule, pre-molten globule, and coil-like) states seen during folding of "normal" globular proteins. However, unlike the case of the nascent globular proteins, IDPs evade being detected as "misfolded" and degraded by the cell's QC system. We refer to this paradox as the order/disorder paradox and postulate that the IDPs capitalize on their intrinsic promiscuity and ability to undergo disorder-to-order transitions upon binding to biological targets (coupled folding and binding) to escape the cell's surveillance machinery. Understanding the mechanism by which the IDPs evade the quality check has wide implications from protein folding to disease biology since the aggregation of misfolded proteins underlies several debilitating illnesses such as many neurodegenerative diseases and cancer.  相似文献   
160.
The excluded volume effect (EVE) rules all life processes. It is created by macromolecules that occupy a given volume thereby confining other molecules to the remaining space with large consequences on reaction kinetics and molecular assembly. Implementing EVE in fibroblast culture accelerated conversion of procollagen to collagen by procollagen C-proteinase (PCP/BMP-1) and proteolytic modification of its allosteric regulator, PCOLCE1. This led to a 20-30- and 3-6-fold increased collagen deposition in two- and three-dimensional cultures, respectively, and creation of crosslinked collagen footprints beneath cells. Important parameters correlating with accelerated deposition were hydrodynamic radius of macromolecules and their negative charge density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号