首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   33篇
  436篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   18篇
  2012年   26篇
  2011年   23篇
  2010年   16篇
  2009年   15篇
  2008年   17篇
  2007年   21篇
  2006年   21篇
  2005年   11篇
  2004年   20篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   10篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有436条查询结果,搜索用时 0 毫秒
111.
Synthesis and biological evaluation of possible prodrugs of COX-2 inhibitors involving sulfonamide and hydroxymethyl groups of 2-hydroxymethyl-4-(5-phenyl-3-trifluoromethyl-pyrazol-1-yl) benzenesulfonamides are described. Out of many options, the sodium salt of N-propionyl sulfonamide demonstrated much improved pharmacological profiles and physicochemical properties suitable for oral as well as parenteral administration.  相似文献   
112.
Single-stranded DNA-binding proteins (SSB) form a class of proteins that bind preferentially single-stranded DNA with high affinity. They are involved in DNA metabolism in all organisms and serve a vital role in replication, recombination and repair of DNA. In this report, we identify human mitochondrial SSB (HmtSSB) as a novel protein-binding partner of tumour suppressor p53, in mitochondria. It binds to the transactivation domain (residues 1–61) of p53 via an extended binding interface, with dissociation constant of 12.7 (± 0.7) μM. Unlike most binding partners reported to date, HmtSSB interacts with both TAD1 (residues 1–40) and TAD2 (residues 41–61) subdomains of p53. HmtSSB enhances intrinsic 3′-5′ exonuclease activity of p53, particularly in hydrolysing 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) present at 3′-end of DNA. Taken together, our data suggest that p53 is involved in DNA repair within mitochondria during oxidative stress. In addition, we characterize HmtSSB binding to ssDNA and p53 N-terminal domain using various biophysical measurements and we propose binding models for both.  相似文献   
113.
114.
The current International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) methods for determining the supported shelf life of a drug product, described in ICH guidance documents Q1A and Q1E, are evaluated in this paper. To support this evaluation, an industry data set is used which is comprised of 26 individual stability batches of a common drug product where most batches are measured over a 24 month storage period. Using randomly sampled sets of 3 or 6 batches from the industry data set, the current ICH methods are assessed from three perspectives. First, the distributional properties of the supported shelf lives are summarized and compared to the distributional properties of the true shelf lives associated with the industry data set, assuming the industry data set represents a finite population of drug product batches for discussion purposes. Second, the results of the ICH “poolability” tests for model selection are summarized and the separate shelf life distributions from the possible alternative models are compared. Finally, the ICH methods are evaluated in terms of their ability to manage risk. Shelf life estimates that are too long result in an unacceptable percentage of nonconforming batches at expiry while those that are too short put the manufacturer at risk of possibly having to prematurely discard safe and efficacious drug product. Based on the analysis of the industry data set, the ICH-recommended approach did not produce supported shelf lives that effectively managed risk. Alternative approaches are required.  相似文献   
115.
Molybdopterin guanine dinucleotide was studied by 31P-NMR in the free, iodoacetamide derivatized form [di(carboxamidomethyl)molybdopterin] and in the native state in the dimethyl sulfoxide reductase from Rhodobacter sphaeroides. The spectra confirm the presence of a pyrophosphate moiety in the cofactor molecule. Comparison of the spectrum of the free pterin with that of the protein-bound cofactor reveals a substantial upfield shift of the 31P resonances in the enzyme-bound form with respect to the free form. This shift is attributed to differences in the bond and torsional angles of the phosphates. The spectrum of the protein suggests significant coupling between the two phosphorus nuclei with coupling constants of approximately 200 Hz. Comparison of the 31P-NMR spectra of molybdopterin guanine dinucleotide and flavin adenine dinucleotide suggests that the two cofactors have similar conformations in both their free and protein-bound forms.  相似文献   
116.
Hao B  Gong W  Rajagopalan PT  Zhou Y  Pei D  Chan MK 《Biochemistry》1999,38(15):4712-4719
While protein synthesis in bacteria begins with a formylated methionine, the formyl group of the nascent polypeptide is removed by peptide deformylase. Since eukaryotic protein synthesis does not involve formylation and deformylation at the N-terminus, there has been increasing interest in peptide deformylase as a potential target for antibacterial chemotherapy. Toward this end and to aid in the design of effective antibiotics targeting peptide deformylase, the structures of the protein-inhibitor complexes of both the cobalt and the zinc containing Escherichia coli peptide deformylase bound to the transition-state analogue, (S)-2-O-(H-phosphonoxy)-L-caproyl-L-leucyl-p-nitroanilide (PCLNA), have been determined. The proteins for both deformylase-inhibitor complexes show basically the same fold as for the native enzyme. The PCLNA inhibitor adopts an extended conformation and fits nicely into a hydrophobic cavity located near the metal site. On the basis of these structures, guidelines for the design of high-affinity deformylase inhibitors are suggested. As our results show that the protein residues which interact with the PCLNA inhibitor are conserved over a wide variety of species, we suggest that antibiotics targeting deformylase could have wide applicability.  相似文献   
117.
Previously, the histidine residue at position 16 in the mature T4 pyrimidine dimer glycosylase (T4-PDG) protein has been suggested to be involved in general (non-target) DNA binding. This interpretation is likely correct, but, in and of itself, cannot account for the most dramatic phenotype of mutants at this position: their inability to restore ultraviolet light resistance to a DNA repair-deficient Escherichia coli strain. Accordingly, this residue has been mutated to serine, glutamic, aspartic acid, lysine, cysteine, and alanine. The mutant proteins were expressed, purified, and their abilities to carry out several functions of T4-PDG were assessed. The mutant proteins were able to perform most functions tested in vitro, albeit at reduced rates compared with the wild type protein. The most likely explanation for the biochemical phenotypes of the mutants is that the histidine residue is required for rapid turnover of the enzyme. This role is interpreted and discussed in the context of a reaction mechanism able to account for the complete spectrum of products generated by T4-PDG during a single turnover cycle.  相似文献   
118.
Glu-Leu-Arg ("ELR") CXC chemokines interleukin-8 (IL-8) and melanoma growth stimulatory activity (MGSA) recruit neutrophils by binding and activating two receptors, CXCR1 and CXCR2. CXCR1 is specific, binding only IL-8 with nanomolar affinity, whereas CXCR2 is promiscuous, binding all ELRCXC chemokines with high affinity. Receptor signaling consists of two events: interactions between the ligand N-terminal loop (N-loop) and receptor N-terminal domain (N-domain) residues (site I), and between the ligand N-terminal ELR and the receptor juxtamembrane domain (J-domain) residues (site II). It is not known how these interactions mediate ligand affinity and selectivity, and whether binding at one site influences binding and function at the other. Sequence analysis and structure-function studies have suggested that the receptor N-domain plays an important role in ligand selectivity. Here, we report ligand-binding properties and structural characteristics of the CXCR1 N-domain in solution and in detergent micelles that mimic the native membrane environment. We find that IL-8 binds the N-domain with significantly higher affinity in micelles than in solution (approximately 1 microM versus approximately 20 microM) and that MGSA does not bind the N-domain in solution but does in micelles with appreciable affinity (approximately 3 microM). We find that the N-domain is structured in micelles and that the entire N-domain interacts with the micelle in an extended fashion. We conclude that the micellar environment constrains the N-domain, and this conformational restraint influences its ligand-binding properties. Most importantly, our data suggest that for both ligands, site I interaction provides similar affinity and that differential coupling between site I and II interactions is responsible for the observed differences in affinity.  相似文献   
119.
Rhodobacter capsulatus xanthine dehydrogenase (XDH) forms an (alphabeta)2 heterotetramer and is highly homologous to homodimeric eukaryotic XDHs. The crystal structures of bovine XDH and R. capsulatus XDH showed that the two proteins have highly similar folds. We have developed an efficient system for the recombinant expression of R. capsulatus XDH in Escherichia coli. The recombinant protein shows spectral features and a range of substrate specificities similar to bovine milk xanthine oxidase. However, R. capsulatus XDH is at least 5 times more active than bovine XDH and, unlike mammalian XDH, does not undergo the conversion to the oxidase form. EPR spectra were obtained for the FeS centers of the enzyme showing an axial signal for FeSI, which is different from that reported for xanthine oxidase. X-ray absorption spectroscopy at the iron and molybdenum K-edge and the tungsten LIII-edge have been used to probe the different metal coordinations of variant forms of the enzyme. Based on a mutation identified in a patient suffering from xanthinuria I, the corresponding arginine 135 was substituted to a cysteine in R. capsulatus XDH, and the protein variant was purified and characterized. Two different forms of XDH-R135C were purified, an active (alphabeta)2 heterotetrameric form and an inactive (alphabeta) heterodimeric form. The active form contains a full complement of redox centers, whereas in the inactive form the FeSI center is likely to be missing.  相似文献   
120.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM Crassulacean acid metabolism - G-6-P glucose-6-phosphate - PMSF phenylmethylsulfonyl fluoride - PEPC phosphoenolpyruvate carboxylase - PEPC-PK phosphoenolpyruvate ca carboxylase-protein kinase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号