首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   14篇
  208篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   15篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   4篇
  2008年   15篇
  2007年   15篇
  2006年   15篇
  2005年   14篇
  2004年   10篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   6篇
  1999年   11篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1986年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有208条查询结果,搜索用时 15 毫秒
111.
A highly reproducible Agrobacterium-mediated transformation system was developed for the wetland monocot Juncus accuminatus. Three Agrobacterium tumefaciens binary plasmid vectors, LBA4404/pTOK233, EHA105/pCAMBIA1201, and EHA105/pCAMBIA1301 were used. All vectors contained the 35SCaMV promoter driven, intron containing, β-glucuronidase (gus), and hygromycin phosphotransferase (hptII) genes within their T-DNA. After 48 h of cocultivation, 21-d-old seedling derived calli were placed on medium containing timentin at 400 mg l−1, to eliminate the bacteria. Calli were selected on MS medium containing 40 or 80 mg l−1 hygromycin, for 3 mo. Resistant calli were regenerated and rooted on MS medium containing hygromycin, 5 mg l−1(22.2 μM) of 6-benzylamino-purine (BA) and 0.1 mg l−1(0.54 μM) of alpha-naphthaleneacetic acid (NAA), respectively. Seventy-one transgenic cell culture lines were obtained and 39 plant lines were established in the greenhouse. All the plants were fertile, phenotypically normal, and set viable seed. Both transient and stable expression of the gus gene were demonstrated by histochemical GUS assays of resistant calli, transgenic leaf, root, inflorescence, seeds, and whole plants. The integration of gus and hptII genes were confirmed by polymerase chain reaction (PCR) and Southern analysis of both F0 and F1 progenies. The integrated genes segregated to the subsequent generation in Mendelian pattern. To our knowledge, this is the first report of the generation of transgenic J. accuminatus plants.  相似文献   
112.
Telomeres and centromere are two essential features of all eukaryotic chromosomes. They provide function that is necessary for the stability of chromosomes. We developed a comprehensive database named TeCK, which covers a gamut of sequence and other related information about telomeric patterns, telomere repeat sequences, centromere sequences and centromeric patterns present in chromosomes. It also contains information about telomerase ribo-nucleoprotein complexes, centromere binding protein and centromere DNA-binding protein complexes. The database also includes a collection of all kinetochore-associated proteins including inner, outer and central kinetochore proteins. The database can be searched using a user-friendly web interface. AVAILABILITY: http://www.bioinfosastra.com/services/teck/index.html.  相似文献   
113.
Four rice indica genotypes of local importance were transformed with RC7, rice chitinase cDNA clone through Agrobacterium-mediated gene transfer method using mature seed derived calli as explants. The putative hygromycin resistant calli showed varied level of regeneration efficiency ranging from 2.0 to 7.6 %. The stable integration and expression of RC7 was confirmed through polymerase chain reaction (PCR) and Western analysis. Transformation efficiency ranged from 0.9 to 5.2 %. The expression of RC7 (35 kDa chitinase) in different tissues of transgenic plant (root, sheath and leaf) was proved through Western analysis and in terms of increased chitinase activity. The inheritance of transgene was studied through PCR and Western analysis in transgenic plants of Pusa Basmati 1. Bioassays with transgenic plants of local cultivars exhibited enhanced resistance up to 33.3 % to rice sheath blight pathogen Rhizoctonia solani under glasshouse conditions. Enhanced expression or 3-to 4-fold increased activity of chitinase in transgenic plants was correlated with sheath blight resistance.  相似文献   
114.
The goal in this study was to determine if pulsed addition of substrate could be used to alter filamentous fungal morphology during fermentation, to result in reduced broth viscosity. In all experiments, an industrially relevant strain of Aspergillus oryzae was grown in 20-liter fermentors. As a control, cultures were fed limiting substrate (glucose) continuously. Tests were performed by altering the feeding strategy so that the same total amount of glucose was fed in repeated 300-s cycles, with the feed pump on for either 30 or 150 s during each cycle. Variables indicative of cellular metabolic activity (biomass concentration, oxygen uptake rate, base consumed for pH control) showed no significant difference between continuous and pulse-fed fermentations. In addition, there was no significant difference between total extracellular protein expression or the apparent distribution of these proteins. In contrast, fungal mycelia during the second half of pulse-fed fermentations were approximately half the size (average projected area) of fungi during fermentations with continuous addition of glucose. As a result, broth viscosity during the second half of pulse-fed fermentations was approximately half that during the second half of continuous fermentations. If these results prove to be applicable for other fungal strains and processes, then this method will represent a simple and inexpensive means to reduce viscosity during filamentous fungal fermentation.  相似文献   
115.
It is hypothesized that autophagy, a global catabolic pathway which is highly conserved from yeast to man, plays an important role in many bioprocesses. Though autophagy is known to be induced by either nutrient starvation or treatment with the drug rapamycin, it is not clear whether the two modes of induction have the same long-term impact in the cell, particularly in the biotechnologically important filamentous fungi. Here, we compare the overall proteomes from the carbon-starved (G-) and rapamycin treated (R+) model fungus Aspergillus nidulans. From about 1,100 visualized protein spots, we conservatively selected a total of 26 proteins with significant different expression. To highlight, increased levels of glucosidases and decreased levels of N-acetylglucosamine pyrophosphorylase were observed, suggesting degradation of the fungal cell wall as an alternate carbon source for both modes of induction. Cdc37 was reduced in expression while 14-3-3 ArtA was increased, implying regulation of polar growth, while also potentially regulating autophagy negatively via PKA or Tor. Other proteins included aspartate transaminase, tryptophan synthase B (TrpB), glycylpeptide N-tetradecanoyltransferase (Nmt1), and aldehyde dehydrogenase (aldA). More interestingly, the majority of the identified proteins (16 of 26) were uniquely expressed in elevated levels in G-. A novel predicted protein from AN8223 which has no sequence homology to other organisms is also implicated to be involved in carbon-starvation. Thus, proteomic data here show that in A. nidulans, rapamycin-induced autophagy and carbon-starvation induced autophagy share some effectors for cell survival, but predominantly involve different long-term effectors.  相似文献   
116.
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4+ and CD8+ T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4+ and CD8+ T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4+ T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4+ and CD8+ T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis.  相似文献   
117.
Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced. The sequence alignment showed A379S, D400Y, E300A, E395A, E395G, H380N, I348N, L301M, M298I, M381G, M402R, R308K, R394P, R397S, and S398R mutations in 12 different patients. The structural analysis of these mutated GKs, showed a variable number of β-α-β units, hairpins, β-bulges, strands, helices, helix–helix interactions, β-turns, and γ-turns along with the RMSD variations when compared to wild-type GK. Molecular modeling studies revealed that the substrate showed variable binding orientations and could not fit into the active site of these mutated structures; moreover, it was expelled out of the conformations. Therefore, these structural variations in GK due to mutations could be one of the strongest reasons for the hyperglycemic levels in these type 2 diabetic patients.  相似文献   
118.
Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.  相似文献   
119.
Crop destruction by the hemibiotrophic rice pathogen Magnaporthe oryzae requires plant defence suppression to facilitate extensive biotrophic growth in host cells before the onset of necrosis. How this is achieved at the genetic level is not well understood. Here, we report that a M. oryzae sirtuin, MoSir2, plays an essential role in rice defence suppression and colonization by controlling superoxide dismutase (SOD) gene expression. Loss of MoSir2 function in Δsir2 strains did not affect appressorial function, but biotrophic growth in rice cells was attenuated. Compared to wild type, Δsir2 strains failed to neutralize plant‐derived reactive oxygen species (ROS) and elicited robust defence responses in rice epidermal cells that included elevated pathogenesis‐related gene expression and granular depositions. Deletion of a SOD‐encoding gene under MoSir2 control generated Δsod1 deletion strains that mimicked Δsir2 for impaired rice defence suppression, confirming SOD activity as a downstream output of MoSir2. In addition, comparative protein acetylation studies and forward genetic analyses identified a JmjC domain‐containing protein as a likely target of MoSir2, and a Δsir2 Δjmjc double mutant was restored for MoSOD1 expression and defence suppression in rice epidermal cells. Together, this work reveals MoSir2 and MoJmjC as novel regulators of early rice cell infection.  相似文献   
120.
Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号