首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6464篇
  免费   779篇
  国内免费   3篇
  7246篇
  2023年   18篇
  2022年   40篇
  2021年   107篇
  2020年   53篇
  2019年   76篇
  2018年   60篇
  2017年   71篇
  2016年   140篇
  2015年   247篇
  2014年   272篇
  2013年   303篇
  2012年   456篇
  2011年   477篇
  2010年   251篇
  2009年   255篇
  2008年   392篇
  2007年   426篇
  2006年   384篇
  2005年   417篇
  2004年   391篇
  2003年   409篇
  2002年   367篇
  2001年   66篇
  2000年   41篇
  1999年   90篇
  1998年   115篇
  1997年   83篇
  1996年   81篇
  1995年   69篇
  1994年   76篇
  1993年   68篇
  1992年   50篇
  1991年   51篇
  1990年   41篇
  1989年   41篇
  1988年   39篇
  1987年   57篇
  1986年   35篇
  1985年   44篇
  1984年   57篇
  1983年   49篇
  1982年   80篇
  1981年   50篇
  1980年   52篇
  1979年   38篇
  1978年   26篇
  1977年   38篇
  1976年   19篇
  1975年   20篇
  1974年   18篇
排序方式: 共有7246条查询结果,搜索用时 14 毫秒
341.
Murine monoclonal antibodies were produced against Mycobacterium tuberculosis (Mtb) using standard hybridoma procedures. By a whole cell enzyme-linked immunosorbent assay (ELISA), one monoclonal antibody (mAb), HB28, demonstrated high level specific reactivity to Mtb. Western blot analysis demonstrated reactivity to a single 65 kDa Mtb protein in the cell wall extract and culture filtrate. HB28 mAb appears to be recognizing a 65 kDa Mtb protein that is over-expressed by Mtb but not other species under certain culture conditions. Differential expression and detection of this protein by HB28 mAb may have potential for diagnostic applications.  相似文献   
342.
Damaged and misfolded proteins that are no longer functional in the cell need to be eliminated. Failure to do so might lead to their accumulation and aggregation, a hallmark of many neurodegenerative diseases. Protein quality control pathways play a major role in the degradation of these proteins, which is mediated mainly by the ubiquitin proteasome system. Despite significant focus on identifying ubiquitin ligases involved in these pathways, along with their substrates, a systems-level understanding of these pathways has been lacking. For instance, as misfolded proteins are rapidly ubiquitylated, unconjugated ubiquitin is rapidly depleted from the cell upon misfolding stress; yet it is unknown whether certain targets compete more efficiently to be ubiquitylated. Using a system-wide approach, we applied statistical and computational methods to identify characteristics enriched among proteins that are further ubiquitylated after heat shock. We discovered that distinct populations of structured and, surprisingly, intrinsically disordered proteins are prone to ubiquitylation. Proteomic analysis revealed that abundant and highly structured proteins constitute the bulk of proteins in the low-solubility fraction after heat shock, but only a portion is ubiquitylated. In contrast, ubiquitylated, intrinsically disordered proteins are enriched in the low-solubility fraction after heat shock. These proteins have a very low abundance in the cell, are rarely encoded by essential genes, and are enriched in binding motifs. In additional experiments, we confirmed that several of the identified intrinsically disordered proteins were ubiquitylated after heat shock and demonstrated for two of them that their disordered regions are important for ubiquitylation after heat shock. We propose that intrinsically disordered regions may be recognized by the protein quality control machinery and thereby facilitate the ubiquitylation of proteins after heat shock.Cells face the constant threat of protein misfolding and aggregation, and thus protein quality control pathways are important in selectively targeting damaged and misfolded proteins for degradation (1, 2). The ubiquitin proteasome system serves as a major mediator of this pathway by conjugating the small protein ubiquitin onto substrates through the E1-E2-E3 (ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin ligase, respectively) cascade for their recognition and degradation by the proteasome (3, 4). It is known that the activity of the ubiquitin-proteasome system is associated with many neurodegenerative diseases. For instance, ubiquitin is found enriched in protein inclusions associated with these diseases (5). Furthermore, proteasome activity has been shown to decrease with age in a large variety of organisms (6), leading to increased proteotoxicity in the cell.Because of the importance of maintaining protein homeostasis, numerous ubiquitin ligases in different cellular compartments function in protein quality control pathways to target misfolded or damaged proteins for degradation via the proteasome. For instance, the conserved Hrd1 ubiquitin ligase is involved in the endoplasmic-reticulum-associated degradation pathway that targets endoplasmic reticulum proteins for retro-translocation to the cytoplasm and proteasome degradation (7). A major question is what features are recognized by ubiquitin ligases that allow them to selectively target terminally misfolded proteins for degradation, given that the folding rates and physicochemical properties vary largely from protein to protein. Several E3 ubiquitin ligases involved in cytosolic protein quality control target their substrates via their interactions with chaperone proteins. For instance, the CHIP ubiquitin ligase can directly bind to Hsp70 and Hsp90 proteins (8), which may hand over client proteins that are not successfully folded. Understanding which features are recognized by these degradation quality-control pathways might help us understand how certain misfolded proteins evade this system, leading to their accumulation and aggregation in the cell.Many studies investigating degradation protein quality control have employed model substrates (e.g. mutated proteins that misfold) to reveal which components are involved in a given quality control machinery. However, these approaches do not typically reveal the whole spectrum of substrates for these pathways. Thus, alternative system-wide approaches are also needed to provide a bigger picture. Heat shock (HS)1 induces general misfolding at the proteome level by increasing thermal energy and was shown to cause an increase in ubiquitylation levels in the cell over 25 years ago (9, 10). However, the exact mechanism and pathways that target misfolded proteins have remained uncharacterized for a long time. We recently showed that the Hul5 ubiquitin ligase plays a major role in this heat stress response that mainly affects cytosolic proteins (11). Absence of Hul5 averts the ubiquitylation in the cytoplasm of several misfolded targets after HS, as well as low-solubility proteins in unstressed cells. Other E3 ubiquitin ligases are likely involved in this pathway (12). Interestingly, as ubiquitin constitutes about only 1% of the proteome, free unconjugated ubiquitin is rapidly depleted under stress conditions (13, 14). Given the limited amount of this protein, how does the cell triage ubiquitin among an excess of misfolded proteins? In order to gain systems-level insight, we sought to identify characteristics enriched among proteins ubiquitylated after HS using a combination of statistical and computational analysis, and we conducted additional proteomics and biochemical experiments to support our hypotheses. We discovered an unexpected susceptibility of intrinsically disordered proteins for ubiquitylation after misfolding stress.  相似文献   
343.
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome.  相似文献   
344.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   
345.
Several actin-binding proteins participate in the morphological changes that occur during amoeboid movement. The gene encoding one of these proteins, the gelation factor ABP-120, was identified and characterized from trophozoites of Entamoeba histolytica . The sequence contains 2574 nucleotides, with an open reading frame of 858 amino acids, giving a protein of 93 kDa belonging to the spectrin family. The N-terminal domain of ABP-120 from E. histolytica revealed a consensus site for actin binding homologous to the actin-binding sites of ABP-120 of Dictyostelium discoideum , α-actinin and spectrin. Analysis of the central domain revealed the presence of four repeats of a 73-amino-acid motif constituting 31% of the protein. In addition, a stretch of 105 amino acids was highly divergent when compared with the C-terminal domain of D. discoideum ABP-120. This sequence showed short motifs that are homologous to microtubule-binding domains. We found that ABP-120 from E. histolytica binds to F-actin. In addition, upon motility of the parasite, this protein localized in the pseudopod and the uroid region, implying a role for ABP-120 in movement and capping of surface receptors in E. histolytica .  相似文献   
346.
Conclusions Current neurochemical studies of the NMDA receptor macromolecular complex are yielding new insights into the interactions of the subunits of this complex and the associated potential clinical benefits of selective modulation of these subnits. Such studies offer the great potential for a new generation of pharmacotherapies for a wide range of CNS disorders, including stroke, a condition for which there is currently no effective pharmacological treatment. However, it is essential to understand that the first generation products in this area may not be optimal pharmacotherapies, such that haracterization of possible receptor subtypes and understanding the molecular biology of the component proteins of the receptor complex will be crucial in the design of the optimal pharmacological modulators of the NMDA receptor complex.Special issue dedicated to Dr. Erminio Costa  相似文献   
347.
348.
349.
Methylenetetrahydrofolate reductase (MTHFR) C677T single nucleotide polymorphism is a major inherited risk factor of venous thromboembolism. We sought to determine its prevalence in genetically isolated populations of Chechens and Circassians in Jordan. The MTHFR C677T mutation was analyzed from blood samples taken from 120 random unrelated Chechens and 72 Circassians. The prevalence of the MTHFR mutation in the Chechen population was 27.5% (allele frequency 15%); the prevalence among the Circassians was 50% (allele frequency 29.2%). The prevalence in the Chechen population is similar to that in Jordan and other world populations, but it is higher in the Circassian population. This study will contribute to understanding the interaction between genetic and environmental risk factors underlying thrombosis and will be useful in deciding which genetic variants should be tested in a clinical genetic testing service.  相似文献   
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号