排序方式: 共有43条查询结果,搜索用时 15 毫秒
31.
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules. 相似文献
32.
Ubiquitylation, the modification of cellular proteins by the covalent attachment of ubiquitin, is critical for diverse biological processes including cell cycle progression, signal transduction and stress response. This process can be reversed and regulated by a group of proteases called deubiquitylating enzymes (DUBs). Otubains are a recently identified family of DUBs that belong to the ovarian tumour (OTU) superfamily of proteins. Here, we report the first crystal structure of an OTU superfamily protein, otubain 2, at 2.1 A resolution and propose a model for otubain-ubiquitin binding on the basis of other DUB structures. Although otubain 2 is a member of the cysteine protease superfamily of folds, its crystal structure shows a novel fold for DUBs. Moreover, the active-site cleft is sterically occluded by a novel loop conformation resulting in an oxyanion hole, which consists uniquely of backbone amides, rather than the composite backbone/side-chain substructures seen in other DUBs and cysteine proteases. Furthermore, the residues that orient and stabilize the active-site histidine of otubain 2 are different from other cysteine proteases. This reorganization of the active-site topology provides a possible explanation for the low turnover and substrate specificity of the otubains. 相似文献
33.
Ono H Sakoda H Fujishiro M Anai M Kushiyama A Fukushima Y Katagiri H Ogihara T Oka Y Kamata H Horike N Uchijima Y Kurihara H Asano T 《American journal of physiology. Cell physiology》2007,293(5):C1576-C1585
Carboxy-terminal modulator protein (CTMP) was identified as binding to the carboxy terminus of Akt and inhibiting the phosphorylation and activation of Akt. In contrast to a previous study, we found CTMP overexpression to significantly enhance Akt phosphorylation at both Thr308 and Ser473 as well as the kinase activity of Akt, while phosphatidylinositol 3-kinase (PI3-kinase) activity was unaffected. Translocation of Akt to the membrane fraction was also markedly increased in response to overexpression of CTMP, with no change in the whole cellular content of Akt. Furthermore, the phosphorylations of GSK-3β and Foxo1, well-known substrates of Akt, were increased by CTMP overexpression. On the other hand, suppression of CTMP with small interfering RNA partially but significantly attenuated this Akt phosphorylation. The cellular activities reportedly mediated by Akt activation were also enhanced by CTMP overexpression. UV-B-induced apoptosis of HeLa cells was significantly reversed not only by overexpression of the active mutant of Akt (myr-Akt) but also by that of CTMP. Increases in glucose transport activity and glycogen synthesis were also induced by overexpression of either myr-Akt or CTMP in 3T3-L1 adipocytes. Taking these results into consideration, it can be concluded that CTMP induces translocation of Akt to the membrane and thereby increases the level of Akt phosphorylation. As a result, CTMP enhances various cellular activities that are principally mediated by the PI3-kinase/Akt pathway. phosphatidylinositol 3-kinase 相似文献
34.
Mazda Yoshihiro Magi Michimasa Nanao Hitonori Kogo Motohiko Miyagi Toyohiko Kanazawa Nobuyuki Kobashi Daijiro 《Wetlands Ecology and Management》2002,10(1):1-9
A coast in southern Vietnam, which is located in a wide and flat alluvial fan and neighbors tidal rivers fringed by wide mangrove swamps, has been eroded continuously by approximately 50 m/year since the early 20th century. Based on field observations and numerical experiments, it is inferred that this large scale erosion is caused by the transition of mangrove vegetation resulting from the long-term impact of humans since the late 19th century. This eroded coast is not in direct contact with mangrove swamps, but is strongly affected by the existence of mangrove forests through the intermediation of neighboring tidal rivers. Thus, with a view to coastal protection, it is argued that the mangrove vegetation in adjacent areas should be managed more sensitively. 相似文献
35.
36.
Junji Yamaguchi Chigure Suzuki Tomohisa Nanao Soichirou Kakuta Kentarou Ozawa Isei Tanida 《Autophagy》2018,14(5):764-777
Conditional knockout mice for Atg9a, specifically in brain tissue, were generated to understand the roles of ATG9A in the neural tissue cells. The mice were born normally, but half of them died within one wk, and none lived beyond 4 wk of age. SQSTM1/p62 and NBR1, receptor proteins for selective autophagy, together with ubiquitin, accumulated in Atg9a-deficient neurosoma at postnatal d 15 (P15), indicating an inhibition of autophagy, whereas these proteins were significantly decreased at P28, as evidenced by immunohistochemistry, electron microscopy and western blot. Conversely, degenerative changes such as spongiosis of nerve fiber tracts proceeded in axons and their terminals that were occupied with aberrant membrane structures and amorphous materials at P28, although no clear-cut degenerative change was detected in neuronal cell bodies. Different from autophagy, diffusion tensor magnetic resonance imaging and histological observations revealed Atg9a-deficiency-induced dysgenesis of the corpus callosum and anterior commissure. As for the neurite extensions of primary cultured neurons, the neurite outgrowth after 3 d culturing was significantly impaired in primary neurons from atg9a-KO mouse brains, but not in those from atg7-KO and atg16l1-KO brains. Moreover, this tendency was also confirmed in Atg9a-knockdown neurons under an atg7-KO background, indicating the role of ATG9A in the regulation of neurite outgrowth that is independent of autophagy. These results suggest that Atg9a deficiency causes progressive degeneration in the axons and their terminals, but not in neuronal cell bodies, where the degradations of SQSTM1/p62 and NBR1 were insufficiently suppressed. Moreover, the deletion of Atg9a impaired nerve fiber tract formation. 相似文献
37.
Yusuke Nakatsu Hideyuki Sakoda Akifumi Kushiyama Hiraku Ono Midori Fujishiro Nanao Horike Masayasu Yoneda Haruya Ohno Yoshihiro Tsuchiya Hideaki Kamata Hidetoshi Tahara Toshiaki Isobe Fusanori Nishimura Hideki Katagiri Yoshitomo Oka Toshiaki Fukushima Shin-Ichiro Takahashi Hiroki Kurihara Takafumi Uchida Tomoichiro Asano 《The Journal of biological chemistry》2010,285(43):33018-33027
38.
K Hayasaka K Nanao M Tahara W Sato G Takada M Miura K Uyemura 《Biochemical and biophysical research communications》1991,181(1):204-207
A full length cDNA of P2 protein of peripheral myelin has been isolated from a cDNA library of human fetus spinal cord. The clone is 2150 base pairs (bp) in length and contains a 393 bp open reading frame encoding a polypeptide of 131 residues. The deduced amino acid sequence is highly homologous to P2 protein from other species. 相似文献
39.
Anai M Shojima N Katagiri H Ogihara T Sakoda H Onishi Y Ono H Fujishiro M Fukushima Y Horike N Viana A Kikuchi M Noguchi N Takahashi S Takata K Oka Y Uchijima Y Kurihara H Asano T 《The Journal of biological chemistry》2005,280(18):18525-18535
Protein kinase B (PKB)/Akt reportedly plays a role in the survival and/or proliferation of cells. We identified a novel protein, which binds to PKB, using a yeast two-hybrid screening system. This association was demonstrated not only in vivo by overexpressing both proteins or by coimmunoprecipitation of the endogenous proteins, but also in vitro using glutathione S-transferase fusion proteins. Importantly, this protein specifically associates with the C terminus of PKB but not with other AGC kinases and enhances PKB phosphorylation and kinase activation without growth factor stimulation. Thus, we termed this Akt-specific binding protein APE (Akt-phosphorylation enhancer). Since APE-induced phosphorylation of PKB did not occur in cells treated with wortmannin or LY294002, APE itself is not a kinase but seems to enhance or prolong the phosphoinositide 3-kinase-dependent phosphorylation of PKB. In cells in which APE was suppressed by small interfering RNA, DNA synthesis was significantly reduced with suppression of PKB phosphorylation, suggesting a synergistic role of APE in PKB-induced proliferation. On the other hand, in cells overexpressing both PKB and APE, despite markedly increased basal phosphorylation of PKB, both DNA rereplication and subsequent Chk2 phosphorylation and apoptosis were seen, suggesting the involvement of APE in the regulation of cell cycling replication licensing. Taking these observations together, APE appears to be a novel regulator of PKB phosphorylation. Furthermore, the interaction between APE and PKB, possibly dependent on the expression levels of both proteins, may be a novel molecular mechanism leading to proliferation and/or apoptosis. 相似文献
40.