首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   77篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2019年   4篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   19篇
  2014年   20篇
  2013年   26篇
  2012年   20篇
  2011年   20篇
  2010年   19篇
  2009年   11篇
  2008年   25篇
  2007年   34篇
  2006年   15篇
  2005年   19篇
  2004年   27篇
  2003年   20篇
  2002年   22篇
  2001年   17篇
  2000年   26篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   7篇
  1994年   8篇
  1993年   6篇
  1992年   12篇
  1991年   16篇
  1990年   18篇
  1989年   16篇
  1988年   7篇
  1987年   12篇
  1986年   8篇
  1985年   11篇
  1984年   6篇
  1983年   9篇
  1982年   6篇
  1981年   4篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1974年   5篇
  1971年   5篇
  1968年   3篇
  1967年   4篇
  1966年   4篇
  1965年   3篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
91.
Three different types of autophagy-macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA)-contribute to degradation of intracellular components in lysosomes in mammalian cells. Although some level of basal macroautophagy and CMA activities has been described in different cell types and tissues, these two pathways are maximally activated under stress conditions. Activation of these two pathways is often sequential, suggesting the existence of some level of cross-talk between both stress-related autophagic pathways. In this work, we analyze the consequences of blockage of macroautophagy on CMA activity. Using mouse embryonic fibroblasts deficient in Atg5, an autophagy-related protein required for autophagosome formation, we have found that blockage of macroautophagy leads to up-regulation of CMA, even under basal conditions. Interestingly, different mechanisms contribute to the observed changes in CMA-related proteins and the consequent activation of CMA during basal and stress conditions in these macroautophagy-deficient cells. This work supports a direct cross-talk between these two forms of autophagy, and it identifies changes in the lysosomal compartment that underlie the basis for the communication between both autophagic pathways.  相似文献   
92.
Atg8 is conjugated to phosphatidylethanolamine (PE) by ubiquitin‐like conjugation reactions. Atg8 has at least two functions in autophagy: membrane biogenesis and target recognition. Regulation of PE conjugation and deconjugation of Atg8 is crucial for these functions in which Atg4 has a critical function by both processing Atg8 precursors and deconjugating Atg8–PE. Here, we report the crystal structures of catalytically inert human Atg4B (HsAtg4B) in complex with processed and unprocessed forms of LC3, a mammalian orthologue of yeast Atg8. On LC3 binding, the regulatory loop and the N‐terminal tail of HsAtg4B undergo large conformational changes. The regulatory loop masking the entrance of the active site of free HsAtg4B is lifted by LC3 Phe119, so that a groove is formed along which the LC3 tail enters the active site. At the same time, the N‐terminal tail masking the exit of the active site of HsAtg4B in the free form is detached from the enzyme core and a large flat surface is exposed, which might enable the enzyme to access the membrane‐bound LC3–PE.  相似文献   
93.
94.
Autophagy: renovation of cells and tissues   总被引:6,自引:0,他引:6  
Mizushima N  Komatsu M 《Cell》2011,147(4):728-741
Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the lysosome. However, the purpose of autophagy is not the simple elimination of materials, but instead, autophagy serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Here we provide a multidisciplinary review of our current understanding of autophagy's role in metabolic adaptation, intracellular quality control, and renovation during development and differentiation. We also explore how recent mouse models in combination with advances in human genetics are providing key insights into how the impairment or activation of autophagy contributes to pathogenesis of diverse diseases, from neurodegenerative diseases such as Parkinson disease to inflammatory disorders such as Crohn disease.  相似文献   
95.
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1.  相似文献   
96.
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.  相似文献   
97.
Proteasomal degradation is mediated through modification of target proteins by Lys-48-linked polyubiquitin (polyUb) chain, which interacts with several binding partners in this pathway through hydrophobic surfaces on individual Ub units. However, the previously reported crystal structures of Lys-48-linked diUb exhibit a closed conformation with sequestered hydrophobic surfaces. NMR studies on mutated Lys-48-linked diUb indicated a pH-dependent conformational equilibrium between closed and open states with the predominance of the former under neutral conditions (90% at pH 6.8). To address the question of how Ub-binding proteins can efficiently access the sequestered hydrophobic surfaces of Ub chains, we revisited the conformational dynamics of Lys-48-linked diUb in solution using wild-type diUb and cyclic forms of diUb in which the Ub units are connected through two Lys-48-mediated isopeptide bonds. Our newly determined crystal structure of wild-type diUb showed an open conformation, whereas NMR analyses of cyclic Lys-48-linked diUb in solution revealed that its structure resembled the closed conformation observed in previous crystal structures. Comparison of a chemical shift of wild-type diUb with that of monomeric Ub and cyclic diUb, which mimic the open and closed states, respectively, with regard to the exposure of hydrophobic surfaces to the solvent indicates that wild-type Lys-48-linked diUb in solution predominantly exhibits the open conformation (75% at pH 7.0), which becomes more populated upon lowering pH. The intrinsic properties of Lys-48-linked Ub chains to adopt the open conformation may be advantageous for interacting with Ub-binding proteins.  相似文献   
98.
Corynebacterium diphtheriae strains express non-fimbrial surface proteins able to recognize and bind to specific host cells receptors. Protein extracts were obtained from bacterial cells by mechanical process and ammonium sulfate precipitation at 25 and 45% (w/v) saturation. SDS-PAGE analysis of the extracts detected two polypeptide bands of 67 and 72 kDa, named 67-72 p. The 67-72 p, rabbit anti-67-72 p IgG antibodies as well as human gastric mucin, N-acetylneuraminic acid and N-acetyl D-glucosamine molecules were able to inhibit bacterial hemagglutination. Hemagglutination assays using 67-72 p-coated latex beads and Western blot analysis of biotin-labeled 67-72 p and erythrocyte receptors demonstrated the binding of 67-72 p to human erythrocyte membranes. Immunolabeled colloidal gold-A protein transmission electron microscopy using anti-67-72 p revealed a diffuse distribution of non-fimbrial 67-72 p on the surface of C. diphtheriae strains of both sucrose-fermenting and non-fermenting biotypes. Non-fimbrial lectin-like surface 67-72 p may play a role as adhesins in bacterial attachment thereby facilitating the early steps in pathogenesis of both toxigenic and non-toxigenic C. diphtheriae.  相似文献   
99.
Autophagy is a major intracellular degradative process that delivers cytoplasmic materials to the lysosome for degradation. Since the discovery of autophagy-related (Atg) genes in the 1990s, there has been a proliferation of studies on the physiological and pathological roles of autophagy in a variety of autophagy knockout models. However, direct evidence of the connections between ATG gene dysfunction and human diseases has emerged only recently. There are an increasing number of reports showing that mutations in the ATG genes were identified in various human diseases such as neurodegenerative diseases, infectious diseases, and cancers. Here, we review the major advances in identification of mutations or polymorphisms of the ATG genes in human diseases. Current autophagy-modulating compounds in clinical trials are also summarized.  相似文献   
100.
Autophagy maintains cell and tissue homeostasis through catabolic degradation. To better delineate the in vivo function for autophagy in adaptive responses to tissue injury, we examined the impact of compromised autophagy in mouse submandibular glands (SMGs) subjected to main excretory duct ligation. Blocking outflow from exocrine glands causes glandular atrophy by increased ductal pressure. Atg5f/−;Aqp5-Cre mice with salivary acinar-specific knockout (KO) of autophagy essential gene Atg5 were generated. While duct ligation induced autophagy and the expression of inflammatory mediators, SMGs in Atg5f/−;Aqp5-Cre mice, before ligation, already expressed higher levels of proinflammatory cytokine and Cdkn1a/p21 messages. Extended ligation period resulted in the caspase-3 activation and acinar cell death, which was delayed by Atg5 knockout. Moreover, expression of a set of senescence-associated secretory phenotype (SASP) factors was elevated in the post-ligated glands. Dysregulation of cell-cycle inhibitor CDKN1A/p21 and activation of senescence-associated β-galactosidase were detected in the stressed SMG duct cells. These senescence markers peaked at day 3 after ligation and partially resolved by day 7 in post-ligated SMGs of wild-type (WT) mice, but not in KO mice. The role of autophagy-related 5 (ATG5)-dependent autophagy in regulating the tempo, duration and magnitude of cellular stress responses in vivo was corroborated by in vitro studies using MEFs lacking ATG5 or autophagy-related 7 (ATG7) and autophagy inhibitors. Collectively, our results highlight the role of ATG5 in the dynamic regulation of ligation-induced cellular senescence and apoptosis, and suggest the involvement of autophagy resolution in salivary repair.Autophagy is a catabolic process that has an essential role in cellular adaptation to multiple types of stress by recycling of superfluous cellular material, safeguarding quality control in organelles, removing protein aggregates, and eliminating intracellular pathogens.1 Conceptually, autophagy serves a pro-survival mechanism by providing sources of energy and biosynthetic building blocks during starvation, removing dysfunctional organelles and large aggregates toxic to cells to avoid unwarranted cell death. However, upon sustained stress conditions, cell death eventually takes place either by excessive autophagy or by the induction of apoptosis and/or necrosis pathways.2 The ATG5, autophagy-related 5, has a pivotal role in autophagosome formation. Mouse neonates systemic deficient for ATG5 die within a day of birth,3 whereas mice depleted of Atg5 in selected tissues have abnormalities ranging from neurodegeneration4 and age-related cardiomyopathy5 to liver tumors.6Autophagy and senescence are two distinct, however functionally intertwined, cellular responses to stress.7 Cellular senescence is a state of stable growth arrest that is induced by telomere shortening, DNA-damage, oncogenes or other stresses. In general, senescence is a heterogeneous phenotype, which is characterized by a senescent-associated secretory phenotype (SASP), expression of senescence-associated β-galactosidase (SA-β-gal) and other senescent markers, and increased cell size.8 In culture system, inhibiting or enhancing autophagy leads to the opposite effect on premature senescence.9, 10, 11, 12 While premature senescence can be induced by a plethora of cell-extrinsic and cell-intrinsic stressors,13 little is known about the possible role of autophagy in modulating injury-induced cellular senescence in vivo. Rodent salivary duct ligation has been used as an experimental model system to study salivary gland atrophy, which often occurs in patients with Sjögren''s syndrome or receiving head and neck radiation therapy. Although autophagy induction has been implicated in the repair of rapamycin-treated, post-ligated salivary glands,14,15 the roles played by autophagy in regulating the injury responses in submandibular glands (SMGs) have not been explored.To explore how autophagy contributes to salivary (patho)physiology, we established a transgenic mouse model deficient for ATG5 in the salivary acinar cells. Previously, we have identified a role for basal autophagy in salivary homeostatic mechanisms that restrict acinar cell size and the number of secretory granules.16 Here, we report that ligation of the major SMG excretory duct triggers the glandular atrophy and the induction of autophagy. By comparing the acute and subacute stress responses from autophagy-impaired and -competent SMGs with duct obstruction, we established the intrinsic roles of ATG5-dependent autophagy in modulating salivary inflammatory responses, stress-induced senescence and cell death, which all occur sequentially in response to tissue injury. Our results provide in vivo evidence that stress-induced autophagic response is indispensable for resolving premature senescence in duct cells of the ligated glands, whereas ATG5 deficiency leads to delayed acinar cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号