首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   56篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   26篇
  2014年   17篇
  2013年   38篇
  2012年   27篇
  2011年   40篇
  2010年   25篇
  2009年   19篇
  2008年   38篇
  2007年   32篇
  2006年   37篇
  2005年   30篇
  2004年   25篇
  2003年   28篇
  2002年   30篇
  2001年   24篇
  2000年   24篇
  1999年   20篇
  1998年   7篇
  1997年   10篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1993年   5篇
  1992年   12篇
  1991年   11篇
  1990年   14篇
  1989年   11篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   13篇
  1984年   9篇
  1983年   10篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1968年   2篇
排序方式: 共有717条查询结果,搜索用时 62 毫秒
81.
Butterfly wing color-patterns are determined in the prospective wing tissues during the late larval and early pupal stages. To study the cellular differentiation process of wings, morphological knowledge on pupal wings is prerequisite. Here we systematically examined morphological patterns of the pupal wing cuticular surface in a wide variety of nymphalid butterflies in relation to adult color-patterns. Several kinds of pupal wing patterns corresponding to particular adult color-pattern elements were widely observed in many species. Especially noteworthy were the pupal "focal" spots corresponding to the adult border ocelli system, which were detected in many species of Nymphalinae, Apaturinae, Argynninae, Satyrinae, and Danainae. Striped patterns on the pupal wing cuticle seen in some species of Limenitinae, Ariadnae, and Marpesiinae directly corresponded to those of the adult wings. In Vanessa cardui, eyespot-like pattern elements were tentatively produced during development in the wing tissue underneath the pupal spots and subsequently erased, suggesting a mechanism for producing novel color-patterns in the course of development and evolution. The pupal focal spots reasonably correlated with the adult eyespots in size in Precis orithya and Ypthima argus. We physically damaged the pupal focal spots and their corresponding cells underneath in these species, which abolished or inhibited the formation of the adult eyespots. Taken together, our results clarified that pupal cuticle patterns were often indicative of the adult color-patterns and apparently reflect molecular activity of organizing centers for the adult color-pattern formation at least in nymphalid butterflies.  相似文献   
82.
Exogenous nitric oxide (NO) suppresses endothelium-derived NO production. We were interested in determining whether this is also the case in flow-induced endothelium-derived NO production. If so, then is the mechanism because of intracellular depletion of tetrahydrobiopterin [BH4; a cofactor of NO synthase (NOS)], which results in superoxide production by uncoupled NOS? Isolated canine femoral arteries were perfused with 100 microM S-nitroso-N-acetylpenicillamine (SNAP; an NO donor) and/or 64 microM BH4. Perfusion of SNAP suppressed flow-induced NO production, which was evaluated as a change in the slope of the linear relationship between perfusion rate and NO production rate (P < 0.02 vs. control; n = 7). Subsequent BH4 perfusion returned the slope to the control level. Concomitant perfusion of SNAP and BH4 retained the control-level NO production (n = 7). Concomitant perfusion of SNAP and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; 1 mM; a membrane-permeable superoxide scavenger) also retained the control-level NO production (n = 7), whereas perfusion of Tiron after SNAP could not return the NO production to the control level (P < 0.02 vs. control; n = 7). We also found a significant decrease in BH4 concentration in the endothelial cells after SNAP perfusion. In conclusion, these results indicate that exogenous NO suppresses the flow-induced, endothelium-derived NO production by superoxide released from uncoupled NOS because of intracellular BH4 depletion.  相似文献   
83.
84.
85.
Mutations in MYOC gene encoding myocilin are responsible for primary open-angle glaucoma (POAG). In order to search for protein(s) that can interact with myocilin, we screened a human skeletal muscle cDNA library using yeast two-hybrid system and identified flotillin-1, a structural protein of lipid raft that is detergent-resistant and a liquid ordered microdomain, as a protein interacting with myocilin. The interaction was confirmed by in vitro glutathione S-transferase pulldown and in vivo co-immunoprecipitation studies. In yeast two-hybrid assay, the C-terminus of myocilin, an olfactomedin-like domain in which most mutations related to POAG are scattered, was found to be necessary and sufficient for the interaction. However, myocilins with mutations such as G364V, K423E, and Y437H on the domain failed to interact with flotillin-1. Although the physiological significance of the interaction has yet to be elucidated, our results showed that the alteration of the interaction by mutations in MYOC might be a key factor of the pathogenesis of POAG.  相似文献   
86.
ATP, which serves as a mediator of intramacrophage signaling pathways through purinoceptors, is known to potentiate macrophage antimycobacterial activity. In this study we examined the effects of ATP in potentiating host resistance to Mycobacterium avium complex (MAC) infection in mice undergoing treatment with a drug regimen using clarithromycin and rifamycin and obtained the following findings. First, the administration of ATP in combination with the clarithromycin and rifamycin regimen accelerated bacterial elimination in MAC-infected mice without causing changes in the histopathological features or the mRNA expression of pro- or anti-inflammatory cytokines from those in the mice not given ATP. Second, ATP potentiated the anti-MAC bactericidal activity of macrophages cultivated in the presence of clarithromycin and rifamycin. This effect of ATP was closely related to intracellular Ca2+ mobilization and was specifically blocked by a cytosolic phospholipase A2 (cPLA2) inhibitor, arachidonyl trifluoromethylketone. Third, intramacrophage translocation of membranous arachidonic acid molecules to MAC-containing phagosomes was also specifically blocked by arachidonyl trifluoromethylketone. In the confocal microscopic observation of MAC-infected macrophages, ATP enhanced the intracellular translocation of cPLA2 into MAC-containing phagosomes. These findings suggest that ATP increases the host anti-MAC resistance by potentiating the antimycobacterial activity of host macrophages and that the cPLA2-dependent generation of arachidonic acid from the phagosomal membrane is essential for such a phenomenon.  相似文献   
87.
Two novel phosphino-phosphaferrocenes [η5-C5H4(CH2)nPPh2]Fe(η5-PC4H2-2,5-Cy2) (PP1: n=1; PP2: n=2) have been designed and prepared in order to clarify weak chelate effect in the previously reported (η5-C5H4CH2PPh2)Fe[η5-PC4H2-2,5-((-)-menthyl)2] (1). 31P NMR studies of reactions of PP1 with PdCl2(cod) (6) revealed that PP1 showed stronger tendency to coordinate to the PdII center in bidentate fashion compared to 1. On the other hand, chelate effect in PP2 was negligibly weak and a reaction of PP2 with 6 in a PP2/6 = 2/1 molar ratio gave a complex PdCl2(PP2)2 (10) cleanly in which PP2 coordinated to the palladium center at the PPh2 moiety as a monodentate ligand. X-ray crystal structure studies of chelate complexes PdCl2(PP1) (7) and PdCl2(PP2) (9) showed that 9 had deviations from an idealized geometry in the square planar complex which could be attributed to a larger chelate ring of PP2, while PP1 in 7 constructed nearly ideal geometry for the square planar complex.From comparison of the coordination behavior between 1, PP1, and PP2, it is concluded that steric bulk of (-)-menthyl groups in 1 is the main factor of the weak chelate coordination of 1.  相似文献   
88.
89.
The process of cancer development consists of three sequential stages termed initiation, promotion, and progression. Oxidative stress damages DNA and introduces mutations into oncogenes or tumor suppressor genes, thus contributing to cancer development. Cancer chemoprevention is defined to prevent or delay the development of cancer by the use of natural or synthetic substances. In the present study, we synthesized a series of organoselenium compounds and evaluated their possible chemopreventive properties in human prostate cancer LNCaP cells. Among 42 organoselenium compounds tested, two compounds, 3-selena-1-dethiacephem 13 and 3-selena-1-dethiacephem 14 strongly activated the Nrf2/ARE (antioxidant response element) signaling and thus markedly increased expression of heme oxygenase-1 (HO-1), a phase II antioxidant enzyme. Translocation of Nrf2 to the nucleus preceded HO-1 protein induction by two compounds. The intracellular ROS level was strongly reduced immediately after treatment with these compounds, showing that they are potent antioxidants. Finally, both compounds inhibited cell growth via cell cycle arrest. Our findings suggest that compounds 13 and 14 could not only attenuate oxidative stress through Nrf2/ARE activation and direct ROS scavenging but also inhibit cell growth. Thus, these compounds possess the potential as pharmacological agents for chemoprevention of human prostate cancer.  相似文献   
90.
The Bacillus subtilis phage DNA-like sigK intervening (skin) element (48 kb) is excised from the chromosome by DNA rearrangement, and a composite gene, sigK (spoIIIC and spoIVCB), is created on the chromosome during sporulation. In this study, we first focused on the role of sknR (skin repressor), which has homology with the gene encoding the Xre repressor of defective phage PBSX. The depletion of SknR caused overexpression of the region between yqaF and yqaN (the yqaF-yqaN operon) and a growth defect in B. subtilis. Point mutation analysis and an electrophoretic mobility shift assay (EMSA) suggested that SknR functions as a negative regulator of gene expression in the yqaF-yqaN operon of the skin element through direct interaction with operators of 2-fold symmetry located in the intergenic region between sknR and yqaF. Deletion analysis revealed that the lethal effect of depletion of SknR was related to overexpression of yqaH and yqaM, whose products were previously reported to associate with DnaA and DnaC, respectively. Furthermore, overexpression of either yqaH or yqaM caused cell filamentation and abnormal chromosome segregation, which suggested that overproduction of these proteins inhibits DNA replication. Moreover, overexpression of yqaM inhibited the initiation of replication. Taken together, these data demonstrate that the B. subtilis skin element carries lethal genes, which are induced by the depletion of sknR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号