首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2016年   3篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有45条查询结果,搜索用时 125 毫秒
21.
Rhizopus arrhizus biomass removed more than 95% of 239Pu, 241Am, 95Zr, 144Ce and 152+154Eu from different waste streams generated in Purex as well as Truex processes after suitable adjustment of pH. © Rapid Science Ltd. 1998  相似文献   
22.
23.
The interactions of cis-di-sulfonated aluminum phthalocyanine (PcS(2)Al) with dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles have been investigated by fluorescence spectroscopy. At pH 7.0, PcS(2)Al incorporates into the vesicles with a high affinity constant (2.7x10(6) M(-1), in terms of phospholipid concentration). The fluorescence changes following rapid mixing of PcS(2)Al with vesicles are biphasic. The first phase is attributed to the entry of PcS(2)Al into the vesicles, as deduced from the linear dependence of the rate upon lipid concentration. More surprisingly, this rate is strongly pH dependent with a marked maximum around pH 7.3, a result interpreted in terms of the coordination state of the aluminum ion in aqueous solutions. At this pH, a hydroxide ion neutralizes the residual positive charge of the metal ion that remains unbalanced after coordination by the phthalocyanine cycle. A water molecule is likely to complete the metal coordination sphere. Only this form, PcAl(+)(OH(-))(OH(2)), with an uncharged core is quickly incorporated into the vesicles. The protonation of OH(-) or the deprotonation of the coordinated H(2)O leading to a positively or negatively charged core, respectively, account for the observed pH effect. Studies on the effect of cholesterol addition and exchange of PcS(2)Al between vesicles and albumin all indicate the absence of transfer of the phthalocyanine between the vesicle hemileaflets, a result expected from the presence of the two negatively charged sulfonated groups at the ring periphery. Instead, the slower kinetic phase is likely due to the movement of the phthalocyanine becoming more buried within the outer leaflet upon the loss of the water molecule coordinated to the aluminum ion.  相似文献   
24.
Biogeographic barriers potentially restrict gene flow but variation in dispersal or vagility can influence the effectiveness of these barriers among different species and produce characteristic patterns of population genetic structure. The objective of this study was to investigate interspecific and intraspecific genetic structure in two closely related species that differ in several life‐history characteristics. The grey teal Anas gracilis is geographically widespread throughout Australia with a distribution that crosses several recognized biogeographic barriers. This species has high vagility as its extensive movements track broad‐scale patterns in rainfall. In contrast, the closely related chestnut teal A. castanea is endemic to the mesic southeastern and southwestern regions of Australia and is more sedentary. We hypothesized that these differences in life‐history characteristics would result in more pronounced population structuring in the chestnut teal. We sequenced five nuclear loci (nuDNA) for 49 grey teal and 23 chestnut teal and compared results to published mitochondrial DNA (mtDNA) sequences. We used analysis of molecular variance to examine population structure, and applied coalescent based approaches to estimate demographic parameters. As predicted, chestnut teal were more strongly structured at both mtDNA and nuDNA (ΦST= 0.163 and 0.054, respectively) than were grey teal (ΦST < 0.0001 for both sets of loci). Surprisingly, a greater proportion of the total genetic variation was partitioned among populations within species (ΦSC= 0.014 and 0.047 for nuDNA and mtDNA, respectively) than between the two species (ΦCT < 0.0001 for both loci). The ‘Isolation with Migration’ coalescent model suggested a late Pleistocene divergence between the taxa, but remarkably, a deeper divergence between the southeastern and southwestern populations of chestnut teal. We conclude that dispersal potential played a prominent role in the structuring of populations within these species and that divergent selection associated with ecology and life history traits likely contributed to rapid and recent speciation in this pair.  相似文献   
25.
Bacterial symbionts play a critical role in the physiology, ecology and evolution of a diverse range of insects. Such symbionts with unknown roles in the ecology and evolution of their hosts have been reported from archaeococcoid scale insects of family Coelostomidiidae. We examine in detail the bacterial community associated with the remaining species of this family, and calculate the cophylogenetic relationship between the hosts and their symbionts. The 28S ribosomal RNA (rRNA) and mitochondrial cytochrome oxidase I genes were used to reconstruct the host phylogeny while the 16S rRNA gene was used for the bacterial phylogeny. Three well-supported clades were detected within the phylogeny of the monophyletic family Coelostomidiidae. Besides the known symbionts, a novel Sodalis-like symbiont was detected from three of the species. The primary bacteriome inhabiting B-symbiont (Bacteroidetes; ‘Candidatus Hoataupuhia coelostomidicola’) was widespread across the host family. Cophylogenetic comparison using Jungles-based reconciliation analysis and ParaFit statistical test revealed a strongly congruent phylogeny of this symbiont with the host family, with no host-switches and few losses and duplications. A similar pattern was observed across a relatively unrelated neococcoid family that exhibits a different physiology and symbiont community, besides a related Bacteroidetes symbiont. We reconfirm that the B-symbiont is a primary symbiont, owing to its strongly congruent evolution with the host and its bacteriome-inhabiting nature. Our analysis affirms recent suggestions that the Bacteroidetes-affiliated symbionts may have driven the hyper-diversification of scale insects worldwide.  相似文献   
26.
The regional heterogeneity of neuronal phenotypes is a well-known phenomenon. Whether or not glia derived from different brain regions are phenotypically and functionally distinct is less clear. Here, we show that microglia, the resident immune cells of the brain, display region-specific responses for activating agents including glutamate (GLU), lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP). Primary microglial cultures were prepared from brainstem (Brs), cortex (Ctx), hippocampus (Hip), striatum (Str) and thalamus (Thl) of 1-day-old rats and were shown to upregulate the release of nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) in a region- and activator-specific manner. With respect to ATP specifically, ATP-induced changes in microglial tumor necrosis factor-α (TNF-α) release, GLU uptake and purinergic receptor expression were also regionally different. When co-cultured with hypoxia (Hyp)-injured neurons, ATP-stimulated microglia from different regions induced different levels of neurotoxicity. These region-specific responses could be altered by pre-conditioning the microglia in a different neurochemical milieu, with taurine (TAU) being one of the key molecules involved. Together, our results demonstrate that microglia display a regional heterogeneity when activated, and this heterogeneity likely arises from differences in the environment surrounding the microglia. These findings present an additional mechanism that may help to explain the regional selectiveness of various brain pathologies.  相似文献   
27.
Scale insects are important ecologically and as agricultural pests. The majority of scale insect taxa feed exclusively on plant phloem sap, which is carbon rich but deficient in essential amino acids. This suggests that, as seen in the related aphids and psyllids, scale insect nutrition might also depend upon bacterial symbionts, yet very little is known about scale insect-bacteria symbioses. We report here the first identification and molecular characterization of symbiotic bacteria associated with the New Zealand giant scale Coelostomidia wairoensis, using fluorescence in situ hybridization (FISH), transmission electron microscopy (TEM) and 16S rRNA gene-based analysis. Dissection and FISH confirmed the location of the bacteria in large, paired, multilobate organs in the abdominal region of the insect. TEM indicated that the dominant pleomorphic bacteria were confined to bacteriocytes in the sheath-enclosed bacteriome. Phylogenetic analysis revealed the presence of three distinct bacterial types, the bacteriome-associated B-symbiont (Bacteroidetes), an Erwinia-related symbiont (Gammaproteobacteria) and Wolbachia sp. (Alphaproteobacteria). This study extends the current knowledge of scale insect symbionts and is the first microbiological investigation of the ecologically important coelostomidiid scales.  相似文献   
28.
Huntington disease is caused by a polyglutamine expansion in the huntingtin protein (Htt) and is associated with excitotoxic death of striatal neurons. Group I metabotropic glutamate receptors (mGluRs) that are coupled to inositol 1,4,5-triphosphate formation and the release of intracellular Ca(2+) stores play an important role in regulating neuronal function. We show here that mGluRs interact with the Htt-binding protein optineurin that is also linked to normal pressure open angled glaucoma and, when expressed in HEK 293 cells, optineurin functions to antagonize agonist-stimulated mGluR1a signaling. We find that Htt is co-precipitated with mGluR1a and that mutant Htt functions to facilitate optineurin-mediated attenuation of mGluR1a signaling. In striatal cell lines derived from Htt(Q111/Q111) mutant knock-in mice mGluR5-stimulated inositol phosphate formation is also severely impaired when compared with striatal cells derived from Htt(Q7/Q7) knock-in mice. In addition, we show that a missense single nucleotide polymorphism optineurin H486R variant previously identified to be associated with glaucoma is selectively impaired in mutant Htt binding. Although optineurin H486R retains the capacity to bind to mGluR1a, optineurin H486R-dependent attenuation of mGluR1a signaling is not enhanced by the expression of mutant Htt. Because G protein-coupled receptor kinase 2 (GRK2) protein expression is relatively low in striatal tissue, we propose that optineurin may substitute for GRK2 in the striatum to mediate mGluR desensitization. Taken together, these studies identify a novel mechanism for mGluR desensitization and an additional biochemical link between altered glutamate receptor signaling and Huntington disease.  相似文献   
29.
30.
Physiology and Molecular Biology of Plants - Heatwaves are becoming more frequent with climate warming and can impact tree growth and reproduction. Eucalyptus parramattensis can cope with an...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号