首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   48篇
  国内免费   2篇
  2023年   6篇
  2022年   5篇
  2021年   14篇
  2020年   14篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   25篇
  2015年   28篇
  2014年   21篇
  2013年   37篇
  2012年   30篇
  2011年   28篇
  2010年   18篇
  2009年   19篇
  2008年   25篇
  2007年   27篇
  2006年   25篇
  2005年   25篇
  2004年   15篇
  2003年   22篇
  2002年   24篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1995年   10篇
  1994年   4篇
  1991年   8篇
  1990年   7篇
  1989年   4篇
  1988年   7篇
  1987年   13篇
  1986年   7篇
  1985年   13篇
  1984年   7篇
  1983年   9篇
  1982年   11篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1978年   12篇
  1977年   12篇
  1976年   6篇
  1975年   3篇
  1972年   3篇
  1968年   4篇
  1967年   5篇
  1965年   3篇
排序方式: 共有673条查询结果,搜索用时 31 毫秒
71.
Loss of a stearoyl-ACP desaturase activity in the Arabidopsis thaliana ssi2 mutant confers susceptibility to the necrotroph, Botrytis cinerea. In contrast, the ssi2 mutant exhibits enhanced resistance to Pseudomonas syringae, Peronospora parasitica, and Cucumber mosaic virus. The altered basal resistance to these pathogens in the ssi2 mutant plant is accompanied by the constitutive accumulation of elevated salicylic acid (SA) level and expression of the pathogenesis-related 1 (PR1) gene, the inability of jasmonic acid (JA) to activate expression of the defensin gene, PDF1.2, and the spontaneous death of cells. Here, we show that presence of the eds5 and pad4 mutant alleles compromises the ssi2-conferred resistance to Pseudomonas syringae pv. maculicola. In contrast, resistance to B. cinerea was restored in the ssi2 eds5 and ssi2 pad4 double-mutant plants. However, resistance to B. cinerea was not accompanied by the restoration of JA responsiveness in the ssi2 eds5 and ssi2 pad4 plants. The ssi2 eds5 and ssi2 pad4 plants retain the ssi2-conferred spontaneous cell death phenotype, suggesting that cell death is not a major factor that predisposes the ssi2 mutant to infection by B. cinerea. Furthermore, the high SA content of the ssi2 pad4 plant, combined with our previous observation that the SA-deficient ssi2 nahG plant succumbs to infection by B. cinerea, suggests that elevated SA level does not have a causal role in the ssi2-conferred susceptibility to B. cinerea. Our results suggest that interaction between an SSI2-dependent factor or factors and an EDS5- and PAD4-dependent mechanism or mechanisms modulates defense to B. cinerea.  相似文献   
72.
73.
Identification of proteins bearing a specific post-translational modification would imply functions of the modification. Proteomic analysis of post-translationally modified proteins is usually challenging due to high complexity and wide dynamic range, as well as unavailability of efficient methods to enrich the proteins of interest. Here, we report a strategy for the detection, isolation, and profiling of O-linked N-acetylglucosamine (O-GlcNAc) modified proteins, which involves three steps: metabolic labeling of cells with an unnatural GlcNAc analogue, peracetylated azido-GlcNAc; chemoselective conjugation of azido-GlcNAc modified proteins via the Staudinger ligation, which is specific between phosphine and azide, using a biotinylated phosphine capture reagent; and detection and affinity purification of the resulting conjugated O-GlcNAc modified proteins. Since the approach relies on a tag (azide) in the substrate, we designated it the tagging-via-substrate (TAS) strategy. A similar strategy was used previously for protein farnesylation, phosphorylation, and sumoylation. Using this approach, we were able to specifically label and subsequently detect azido-GlcNAc modified proteins from the cytosolic lysates of HeLa, 3T3, COS-1, and S2 cell lines, suggesting the azido-substrate could be tolerated by the enzymatic systems among these cells from diverse biological species. We isolated azido-GlcNAc modified proteins from the cytosolic extract of S2 cells and identified 10 previously reported and 41 putative O-GlcNAc modified proteins, by nano-HPLC-MS/MS. Our study demonstrates that the TAS approach is a useful tool for the detection and proteomic analysis of O-GlcNAc modified proteins.  相似文献   
74.
75.
Endotoxic shock, a syndrome characterized by deranged hemodynamics, coagulation abnormalities, and multiple system organ failure is caused by the release into the circulation of lipopolysaccharide (LPS), the structurally diverse component of Gram-negative bacterial outer membranes, and is responsible for 60% mortality in humans. Polymyxin B (PMB), a cyclic, cationic peptide antibiotic, neutralizes endotoxin but induces severe side effects in the process. The potent endotoxin neutralizing ability of PMB, however, offers possibilities for designing non-toxic therapeutic agents for combating endotoxicosis. Amongst the numerous approaches for combating endotoxic shock, peptide mediated neutralization of LPS seems to be the most attractive one. The precise mode of binding of PMB to LPS and the structural features involved therein have been elucidated only recently using a variety of biophysical approaches. These suggest that efficient neutralization of endotoxin by PMB is not achieved by mere binding to LPS but requires its sequestration from the membrane. Incorporation of this feature into the design of endotoxin neutralizing peptides should lead to the development of effective antidotes for endotoxic shock.  相似文献   
76.
77.
Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.  相似文献   
78.
The characteristics and functions of CD4(+)CD25(+) regulatory cells have been well defined in murine and human systems. However, the interaction between CD4(+)CD25(+) T cells and dendritic cells (DC) remains unclear. In this study, we examined the effect of human CD4(+)CD25(+) T cells on maturation and function of monocyte-derived DC. We show that regulatory T cells render the DC inefficient as APCs despite prestimulation with CD40 ligand. This effect was marginally reverted by neutralizing Abs to TGF-beta. There was an increased IL-10 secretion and reduced expression of costimulatory molecules in DC. Thus, in addition to direct suppressor effect on CD4(+) T cells, regulatory T cells may modulate the immune response through DC.  相似文献   
79.
Regulation of fibroblast growth factor-23 signaling by klotho   总被引:20,自引:0,他引:20  
The aging suppressor gene Klotho encodes a single-pass transmembrane protein. Klotho-deficient mice exhibit a variety of aging-like phenotypes, many of which are similar to those observed in fibroblast growth factor-23 (FGF23)-deficient mice. To test the possibility that Klotho and FGF23 may function in a common signal transduction pathway(s), we investigated whether Klotho is involved in FGF signaling. Here we show that Klotho protein directly binds to multiple FGF receptors (FGFRs). The Klotho-FGFR complex binds to FGF23 with higher affinity than FGFR or Klotho alone. In addition, Klotho significantly enhanced the ability of FGF23 to induce phosphorylation of FGF receptor substrate and ERK in various types of cells. Thus, Klotho functions as a cofactor essential for activation of FGF signaling by FGF23.  相似文献   
80.
Subversion of actin dynamics by EPEC and EHEC   总被引:6,自引:0,他引:6  
During the course of infection, enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) subvert the host cell signalling machinery and hijack the actin cytoskeleton to tighten their interaction with the gut epithelium, while avoiding phagocytosis by professional phagocytes. Much progress has been made recently in our understanding of how EPEC and EHEC regulate the pathways leading to local activation of two regulators of actin cytoskeleton dynamics, the Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex. A recent highlight is the unravelling of functions for effector proteins (particularly Tir, TccP, Map and EspG/EspG2) that are injected into the host cell by a type III secretion system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号