首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   10篇
  171篇
  2023年   3篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   5篇
  2013年   6篇
  2012年   12篇
  2011年   12篇
  2010年   7篇
  2009年   9篇
  2008年   13篇
  2007年   8篇
  2006年   11篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   2篇
  1987年   2篇
  1979年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
71.
A protein complex network of Drosophila melanogaster   总被引:1,自引:0,他引:1  
Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.  相似文献   
72.
The COX-2 product prostaglandin E2 (PGE2) contributes to the high metastatic capacity of breast tumors. Our published data indicate that inhibiting either PGE2 production or PGE2-mediated signaling through the PGE2 receptor EP4 reduces metastasis by a mechanism that requires natural killer (NK) cells. It is known that NK cell function is compromised by PGE2, but very little is known about the mechanism by which PGE2 affects NK effector activity. We now report the direct effects of PGE2 on the NK cell. Endogenous murine splenic NK cells express all four PGE2 receptors (EP1-4). We examined the role of EP receptors in three NK cell functions: migration, cytotoxicity, and cytokine release. Like PGE2, the EP4 agonist PGE1-OH blocked NK cell migration to FBS and to four chemokines (ITAC, MIP-1α, SDF-1α, and CCL21). The EP2 agonist, Butaprost, inhibited migration to specific chemokines but not in response to FBS. In contrast to the inhibitory actions of PGE2, the EP1/EP3 agonist Sulprostone increased migration. Unlike the opposing effects of EP4 vs. EP1/EP3 on migration, agonists of each EP receptor were uniformly inhibiting to NK-mediated cytotoxicity. The EP4 agonist, PGE1-OH, inhibited IFNγ production from NK cells. Agonists for EP1, EP2, and EP3 were not as effective at inhibiting IFNγ. Agonists of EP1, EP2, and EP4 all inhibited TNFα; EP4 agonists were the most potent. Thus, the EP4 receptor consistently contributed to loss of function. These results, taken together, support a mechanism whereby inhibiting PGE2 production or preventing signaling through the EP4 receptor may prevent suppression of NK functions that are critical to the control of breast cancer metastasis.  相似文献   
73.
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.  相似文献   
74.
The apicoplast of Plasmodium harbors several metabolic pathways. The enzymes required to perform these reactions are all nuclearly encoded and apicoplast targeted (NEAT) proteins. Plasmodium falciparum Enoyl-ACP Reductase (PfENR) is one such NEAT protein. The NEAT proteins have a transit peptide which is required for crossing the membranes of apicoplast. We studied the importance of basic residues like Arginine and Lysine within the transit peptide. Previous studies have suggested that all basic residues are essential for apicoplast trafficking. In this study, we demonstrate that only some of these residues are essential (K44, R48, K51, and R52), whereas others are dispensable (R40, K42, and K49). On mutating these specific residues, PfENR is not imported into the apicoplast and is mislocalized to the cytoplasm. We also demonstrate that these residues are also crucial for interaction with Hsp70-1, implying that interactions of Lysine 44, Arginine 48, Lysine 51, and Arginine 52 of the transit peptide with PfHsp70-1 are required for apicoplast trafficking. 15-Deoxyspergualin, which has earlier been proposed to interact with EEVD motif of PfHsp70-1 hinders the physical interaction between these cationic residues of PfENR and Hsp70-1. Hence, we propose that in the transport competent state of NEAT proteins some specific positively charged amino acids in the transit peptide interact with PfHsp70-1, and this interaction is essential for apicoplast targeting.  相似文献   
75.

Background  

The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites.  相似文献   
76.
The dopamine (DA) transporter (DAT) is a major molecular target of the psychostimulant amphetamine (AMPH). AMPH, as a result of its ability to reverse DAT-mediated inward transport of DA, induces DA efflux thereby increasing extracellular DA levels. This increase is thought to underlie the behavioral effects of AMPH. We have demonstrated previously that insulin, through phosphatidylinositol 3-kinase (PI3K) signaling, regulates DA clearance by fine-tuning DAT plasma membrane expression. PI3K signaling may represent a novel mechanism for regulating DA efflux evoked by AMPH, since only active DAT at the plasma membrane can efflux DA. Here, we show in both a heterologous expression system and DA neurons that inhibition of PI3K decreases DAT cell surface expression and, as a consequence, AMPH-induced DA efflux.  相似文献   
77.

Background

Radiation-induced gastrointestinal syndrome (RIGS) results from a combination of direct cytocidal effects on intestinal crypt and endothelial cells and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, infection and mortality. Because R-spondin1 (Rspo1) acts as a mitogenic factor for intestinal stem cells, we hypothesized that systemic administration of Rspo1 would amplify the intestinal crypt cells and accelerate the regeneration of the irradiated intestine, thereby, ameliorating RIGS.

Methods and Findings

Male C57Bl/6 mice received recombinant adenovirus expressing human R-spondin1 (AdRspo1) or E.coli Lacz (AdLacz), 1–3 days before whole body irradiation (WBI) or abdominal irradiation (AIR). Post-irradiation survival was assessed by Kaplan Meier analysis. RIGS was assessed by histological examination of intestine after hematoxilin and eosin staining, immunohistochemical staining of BrdU incorporation, Lgr5 and β-catenin expression and TUNEL staining. The xylose absorption test (XAT) was performed to evaluate the functional integrity of the intestinal mucosal barrier. In order to examine the effect of R-spondin1 on tumor growth, AdRspo1 and AdLacZ was administered in the animals having palpable tumor and then exposed to AIR. There was a significant increase in survival in AdRspo1 cohorts compared to AdLacZ (p<0.003) controls, following WBI (10.4 Gy). Significant delay in tumor growth was observed after AIR in both cohorts AdRspo1 and AdLacZ but AdRspo1 treated animals showed improved survival compared to AdLacZ. Histological analysis and XAT demonstrated significant structural and functional regeneration of the intestine in irradiated animals following AdRspo1 treatment. Immunohistochemical analysis demonstrated an increase in Lgr5+ve crypt cells and the translocation of β-catenin from the cytosol to nucleus and upregulation of β-catenin target genes in AdRspo1-treated mice, as compared to AdLacz-treated mice.

Conclusion

Rspo1 promoted radioprotection against RIGS and improved survival of mice exposed to WBI. The mechanism was likely related to induction of the Wnt-β-catenin pathway and promotion of intestinal stem cell regeneration. Rspo1 has protective effect only on normal intestinal tissue but not in tumors after AIR and thereby may increase the therapeutic ratio of chemoradiation therapy in patients undergoing abdominal irradiation for GI malignancies.  相似文献   
78.
Karmodiya K  Surolia N 《Proteins》2008,70(2):528-538
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.  相似文献   
79.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.  相似文献   
80.
The RecG helicase of Escherichia coli unwinds both Holliday junction (HJ) and replication fork DNA substrates. Our lab previously identified and characterized peptides (WRWYCR and KWWCRW) that block the activity of RecG on these substrates. We determined that the peptides bind HJ DNA and prevent the binding of RecG. Herein, we present further evidence that the peptides are competitive inhibitors of RecG binding to its substrates. We have generated structural models of interactions between WRWYCR and a junction substrate. Using the fluorescent probe 2-aminopurine, we show that inhibitors interact with highest affinity with HJs (Kd = 14 nM) and ~4- to 9-fold more weakly with replication fork substrates. The fluorescence assay results agree with the structural model, and predict the molecular basis for interactions between HJ-trapping peptides and branched DNA molecules. Specifically, aromatic amino acids in the peptides stack with bases at the center of the DNA substrates. These interactions are stabilized by hydrogen bonds to the DNA and by intrapeptide interactions. These peptides inhibit several proteins involved in DNA repair in addition to RecG, have been useful as tools to dissect recombination, and possess antibiotic activity. Greater understanding of the peptides’ mechanism of action will further increase their utility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号