首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
  2021年   4篇
  2019年   4篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   9篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
排序方式: 共有131条查询结果,搜索用时 31 毫秒
61.
Delta 1-Piperidine 2-carboxylic acid, an alpha-imino acid, is reduced by 1,4-dihydropyridines to pipecolic acid, an alpha-amino acid, and the corresponding pyridinium ions. This nonenzymatic reaction occurs only in the direction of pipecolic acid production. Glutamate dehydrogenase catalyzes this reaction when the reductant is NADPH and gives as products L-pipecolic acid and NADP+. The reaction velocity for the enzyme-catalyzed reaction is measurable in either direction. The pH-independent equilibrium constant, Keq, for the reduction of the imino acid by NADPH to give pipecolic acid anion and NADP+ was determined from the equilibrium conditions and the pKa values of pipecolic acid (10.72) and of the cyclic imino acid (8.10). The value of Keq was found to be 175 +/- 30; the values of delta G0, delta H0 and delta S0 are -3.1 +/- 0.1 kcal/mol, 5 +/- 1 kcal/mol and 27 +/- 4 e.u., respectively. The data indicate that the reactants are far more solvated than the products and that there must be a large degree of solvent reorganization during the course of the reaction. If these thermodynamic parameters apply to the redox step of the enzyme-catalyzed glutamate reaction, then the burst phase which results upon mixing the enzyme, L-glutamate and NADP+ in stoichiometric amounts must contain a hidden nonredox step of large delta H0 value to account for the curved Arrhenius plot observed for this phase (A.H. Colen, R.T. Medary and H.F. Fisher, Biopolymers 20 (1981) 879).  相似文献   
62.
Activation of adenylate cyclase by guanine nucleotide and catecholamines was examined in plasma membranes prepared from rabbit skeletal muscle. The GTP analog, 5′-guanylyl imidodiphosphate caused a time and temperature-dependent activation of the enzyme which was persistent, the Ka was 0.05 μM. 5′-Guanylyl imidodiphosphate binding to the membranes was time and temperature dependent, KD 0.07 μM. Beta adrenergic amines accelerated the rate of 5′-guanylyl imidodiphosphate activation of the enzyme with an order of potency isoproterenol ≈ soterenol ≈ salbutamol > epinephrine ? norepinephrine. Catecholamine activation was antagonized by propranolol and the β2 antagonist butoxamine; the β1 antagonist practolol was inactive. [3H]Dihydroalprenolol bound to the membranes and binding was antagonized by β adrenergic agonists with an order of potency similar to the activation of adenylate cyclase and was antagonized by butoxamine but not by practolol. The data are consistent with the idea that adenylate cyclase in skeletal muscle plasma membranes is coupled to adrenergic receptors of the β2 type.  相似文献   
63.
Arginine vasopressin (AVP) has been shown previously to enhance phosphatidylinositol (PI) turnover and mobilize calcium in the rat aortic smooth muscle cell-line (A10; ATCC CRL 1476) via the V1 receptor (Aiyar, N., Nambi, P., Stassen, F. L., and Crooke, S. T. (1986) Life Sci. 39, 37-45). Exposure of A10 cells to AVP for periods ranging from 5 min to 2 h resulted in 30-40% loss in AVP-binding sites and an inhibition of the production of inositol di- and trisphosphates and the mobilization of calcium when the cells were rechallenged by addition of AVP. We now report that during the same time course AVP induces a dose- and time-dependent decrease in labeled PI, phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate reaching a minimum after 30 min of incubation. After 2 h of exposure to AVP, the levels of labeled PI, phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate increased to a new basal level approximately 30% less than the untreated cultures. The decrease in inositol lipid labeling mediated by AVP was inhibited when the V1 antagonist SK&F 100273 was included in the incubations with AVP. No decrease was observed when the V2 agonist 1-deamino, [8-D-arginine]vasopressin was used for pretreatment of the cells. Furthermore, when PI kinase activity was measured in cell extracts from untreated and AVP-treated (2 h) cells a significant decrease (p less than 0.05) was observed in the absence, but not in the presence, of added PI in the AVP-treated cells as compared with the control cells. Thrombin also stimulates PI metabolism and calcium mobilization in these cells and brought about both a prolonged decrease in inositol lipids and inhibition of PI kinase activity. AVP pretreatment affected the release of intracellular Ca2+ induced by AVP, thrombin, and ATP, differently. The time of AVP pretreatment required to induce half-maximal inhibition of intracellular Ca2+ release in response to AVP, thrombin, and ATP was approximately 8, 24, and 30 min, respectively. Consequently, we suggest that the reduction in response to AVP with short term preincubation is due to homologous desensitization as reflected by 30-40% decrease in V1 receptors. Subsequently, a decrease in inositol lipid pools and PI kinase activity results in heterologous desensitization in response to AVP, thrombin, and ATP.  相似文献   
64.
Glomerular mesangial cells play an important role in the development of glomerulosclerosis. Mesangial cell apoptosis has been shown to be involved in different stages of development of glomerulonephritis. The aim of the present study was to evaluate the effect of inhibition of serine/threonine phosphatases by okadaic acid, a shell fish toxin, on rat mesangial cell apoptosis and to examine the molecular mechanisms particularly the role of caspases. Okadaic acid significantly induced mesangial cell apoptosis, as measured by an increase in cytoplasmic nucleosome-associated DNA fragmentation. The induction of apoptosis was dependent on protein synthesis, because cyclohexamide, a protein synthesis inhibitor, blocked okadaic acid-induced apoptosis. In addition, okadaic acid stimulated caspase activities (as measured by caspase substrate peptide hydrolysis) in cultured rat mesangial cells at different time points. After 12 h treatment, okadaic acid caused a modest increase in caspase-8 (IETD-pNAse)(159.3 ± 6.7%) activity, while after 18 h treatment, okadaic acid caused a significant increase in caspase-3 (DEVD-pNAse)(906 ± 245%) activity. Okadaic acid-stimulated caspase-3 activity was inhibited by Z-IETD-FMK (caspase-8 inhibitor) suggesting that the caspase-3 activity is downstream of caspase-8 activity. Both caspase-3 and caspase-8 inhibitors blocked okadaic acid-stimulated apoptosis. These data suggest that inhibition of protein phosphatases by okadaic acid induces apoptosis in rat mesangial cells by activating caspase-3- and -8-like activities and that caspase-3-like activity is downstream of caspase-8-like activity.  相似文献   
65.
SAR exploration of the central diamine, benzyl, and terminal aminoalkoxy regions of the N-cyclic azaalkyl benzamide series led to the identification of very potent human urotensin-II receptor antagonists such as 1a with a Ki of 4 nM. The synthesis and structure–activity relationships (SAR) of N-cyclic azaalkyl benzamides are described.  相似文献   
66.

Background  

Methylthioadenosine, the main by-product of spermidine synthesis, is degraded inBacillus subtilisas adenine and methylthioribose. The latter is an excellent sulfur source and the precursor of quorum-sensing signalling molecules. Nothing was known about methylthioribose recycling in this organism.  相似文献   
67.
BACKGROUND: Benzo(a)pyrene (BaP), anthracene (ANTH) and chrysene (CHRY) are polynuclear aromatic hydrocarbons (PAHs) implicated in renal toxicity and carcinogenesis. These PAHs elicit cell type-specific effects that help predict toxicity outcomes in vitro and in vivo. While BaP and ANTH selectively injure glomerular mesangial cells, and CHRY targets cortico-tubular epithelial cells, binary or ternary mixtures of these hydrocarbons markedly reduce the overall cytotoxic potential of individual hydrocarbons. METHODS: To study the biochemical basis of these antagonistic interactions, renal glomerular mesangial cells were challenged with BaP alone (0.03 - 30 microM) or in the presence of ANTH (3 microM) or CHRY (3 microM) for 24 hr. Total RNA and protein will be harvested for Northern analysis and measurements of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin-O-deethylase (EROD) activity, respectively, to evaluate cytochrome P450 mRNA and protein inducibility. Cellular hydrocarbon uptake and metabolic profiles of PAHs were analyzed by high performance liquid chromatography (HPLC). RESULTS: Combined hydrocarbon treatments did not influence the cellular uptake of individual hydrocarbons. ANTH or CHRY strongly repressed BaP-inducible cytochrome P450 mRNA and protein expression, and markedly inhibited oxidative BaP metabolism. CONCLUSION: These findings indicate that antagonistic interactions among nephrocarcinogenic PAHs involve altered expression of cytochrome P450s that modulate bioactivation profiles and nephrotoxic/ nephrocarcinogenic potential.  相似文献   
68.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM), two closely related peptides, initiate their biological responses through their interaction with calcitonin receptor-like receptor (CRLR). The CRLR receptor phenotype can be determined by coexpression of CRLR with one of the three-receptor activity modifying proteins (RAMPs). In this report, we characterized the pharmacological properties of the human or porcine CRLR with individual RAMPs transiently expressed in human embroynic kidney cell line (HEK-293). Characterization of RAMP1/human or porcine CRLR combination by radioligand binding ([125I] hCGRP) and functional assay (activation of adenylyl cyclase) revealed the properties of CGRP receptor. Similarly characterization of RAMP2/human or porcine CRLR and RAMP3/human or porcine CRLR combination by radioligand binding ([125I]rADM) and functional assay (activation of adenylyl cyclase) revealed the properties of ADM (22–52) sensitive-ADM receptor. In addition, porcine CRLR/RAMP2 or 3 combination displayed specific high affinity [125I] hCGRP binding also. Also, co-transfection of porcine CRLR with RAMPs provided higher expression level of the receptor than the human counterpart. Thus the present study along with earlier studies strongly support the role of RAMPs in the functional expression of specific CRLRs.  相似文献   
69.
Ali SM  Nambi P  Fredrickson TA  Brooks DP 《Peptides》1999,20(12):49-1495
Epithelins are polypeptides that are preferentially expressed in epithelial cells and modulate growth. Epithelin expression is predominant in tissues of epithelial origin such as the kidney, spleen, lung, placenta, and colon. Because polycystic kidney disease involves abnormal proliferation of the proximal and/or distal tubule epithelial cells, we investigated epithelin mRNA expression in polycystic kidneys of mice homozygous for the mutation. Epithelin mRNA was highly expressed in the polycystic kidneys of homozygous mice when compared with the heterozygotes or wild type controls. A study on the time course of epithelin expression indicated that epithelin mRNA expression paralleled cyst formation and progression of the disease. A 2-fold increase in expression was observed at Day 15, a stage when cystic changes were first visible. This increase in expression was also observed at Day 21, a stage of maximum disease pathology, which ultimately results in the death of the animal. In situ hybridization localized epithelin mRNA predominantly to the epithelial cell layer surrounding the cysts. The high levels of epithelin in epithelial cells suggest a role in renal epithelial cell proliferation and cyst formation in polycystic kidney disease.  相似文献   
70.
Analysis of the stomach contents of 1002 specimens of Champsodon snyderi (Champsodontidae) (17.3–91.2mm SL) from Tosa Bay, southern Japan, showed that species to primarily feed on crustaceans and fishes (87.9% by frequency, 37.6% by weight for the former; 17.3% and 60.7% for the latter, respectively), although fishes occurred more often in stomachs of individuals larger than 50mm SL. Champsodon snyderi ingested large prey fishes (60.5–101.0% of predator SL), the maximum weight recorded for a single ingested specimen being 50.9% of the predator weight. Mesopelagic Bregmaceros nectabanus were by far the dominant prey fish, followed by C. snyderi (cannibalism), indicating that C. snyderi leaves the bottom to feed in the pelagic environment during the night.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号