首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48744篇
  免费   3478篇
  国内免费   25篇
  2023年   150篇
  2022年   468篇
  2021年   937篇
  2020年   582篇
  2019年   715篇
  2018年   1068篇
  2017年   937篇
  2016年   1541篇
  2015年   2394篇
  2014年   2752篇
  2013年   3072篇
  2012年   4064篇
  2011年   3908篇
  2010年   2466篇
  2009年   2258篇
  2008年   3090篇
  2007年   3015篇
  2006年   2604篇
  2005年   2425篇
  2004年   2220篇
  2003年   1917篇
  2002年   1671篇
  2001年   1340篇
  2000年   1264篇
  1999年   1018篇
  1998年   410篇
  1997年   360篇
  1996年   260篇
  1995年   222篇
  1994年   215篇
  1993年   180篇
  1992年   334篇
  1991年   302篇
  1990年   274篇
  1989年   241篇
  1988年   184篇
  1987年   168篇
  1986年   137篇
  1985年   108篇
  1984年   86篇
  1983年   85篇
  1982年   64篇
  1981年   54篇
  1980年   55篇
  1979年   74篇
  1978年   53篇
  1977年   51篇
  1976年   44篇
  1975年   43篇
  1974年   64篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
Efficient cell migration is central to the normal development of tissues and organs and is involved in a wide range of human diseases, including cancer metastasis, immune responses, and cardiovascular disorders. Mesenchymal migration is modulated by focal-adhesion proteins, which organize into large integrin-rich protein complexes at the basal surface of adherent cells. Whether the extent of clustering of focal-adhesion proteins is actually required for effective migration is unclear. We recently demonstrated that the depletion of major focal-adhesion proteins, as well as modulation of matrix compliance, actin assembly, mitochondrial activity, and DNA recombination, all converged into highly predictable, inter-related, biphasic changes in focal adhesion size and cell migration. Herein, we further discuss the role of focal adhesions in controlling cell spreading and test their potential role in cell migration.  相似文献   
892.
Highlights? Wnt inhibitor sFRP3 exhibits activity-dependent expression in the adult hippocampus ? sFRP3 maintains quiescence of adult hippocampal radial glia-like neural stem cells ? sFRP3 inhibits maturation, dendritic development, and spinal formation of new neurons ? sFRP3 partially mediates activity-dependent adult hippocampal neurogenesis  相似文献   
893.

Background

Schistosoma mansoni and S. haematobium are co-endemic in many areas in Africa. Yet, little is known about the micro-geographical distribution of these two infections or associated disease within such foci. Such knowledge could give important insights into the drivers of infection and disease and as such better tailor schistosomiasis control and elimination efforts.

Methodology

In a co-endemic farming community in northern Senegal (346 children (0–19 y) and 253 adults (20–85 y); n = 599 in total), we studied the spatial distribution of S. mansoni and S. haematobium single and mixed infections (by microscopy), S. mansoni-specific hepatic fibrosis, S. haematobium-specific urinary tract morbidity (by ultrasound) and water contact behavior (by questionnaire). The Kulldorff''s scan statistic was used to detect spatial clusters of infection and morbidity, adjusted for the spatial distribution of gender and age.

Principal Findings

Schistosoma mansoni and S. haematobium infection densities clustered in different sections of the community (p = 0.002 and p = 0.023, respectively), possibly related to heterogeneities in the use of different water contact sites. While the distribution of urinary tract morbidity was homogeneous, a strong geospatial cluster was found for severe hepatic fibrosis (p = 0.001). Particularly those people living adjacent to the most frequently used water contact site were more at risk for more advanced morbidity (RR = 6.3; p = 0.043).

Conclusions/Significance

Schistosoma infection and associated disease showed important micro-geographical heterogeneities with divergent patterns for S. mansoni and S. haematobium in this Senegalese community. Further in depth investigations are needed to confirm and explain our observations. The present study indicates that local geospatial patterns should be taken into account in both research and control of schistosomiasis. The observed extreme focality of schistosomiasis even at community level, suggests that current strategies may not suffice to move from morbidity control to elimination of schistosomiasis, and calls for less uniform measures at a finer scale.  相似文献   
894.

Background

Dengue virus (DENV) is the most widespread arbovirus with an estimated 100 million infections occurring every year. Endemic in the tropical and subtropical areas of the world, dengue fever/dengue hemorrhagic fever (DF/DHF) is emerging as a major public health concern. The complex array of concurrent host physiologic changes has hampered a complete understanding of underlying molecular mechanisms of dengue pathogenesis.

Methodology/Principle Findings

Systems level characterization of serum metabolome and lipidome of adult DF patients at early febrile, defervescence, and convalescent stages of DENV infection was performed using liquid chromatography- and gas chromatography-mass spectrometry. The tractability of following metabolite and lipid changes in a relatively large sample size (n = 44) across three prominent infection stages allowed the identification of critical physiologic changes that coincided with the different stages. Sixty differential metabolites were identified in our metabolomics analysis and the main metabolite classes were free fatty acids, acylcarnitines, phospholipids, and amino acids. Major perturbed metabolic pathways included fatty acid biosynthesis and β-oxidation, phospholipid catabolism, steroid hormone pathway, etc., suggesting the multifactorial nature of human host responses. Analysis of phospholipids and sphingolipids verified the temporal trends and revealed association with lymphocytes and platelets numbers. These metabolites were significantly perturbed during the early stages, and normalized to control levels at convalescent stage, suggesting their potential utility as prognostic markers.

Conclusions/Significance

DENV infection causes temporally distinct serum metabolome and lipidome changes, and many of the differential metabolites are involved in acute inflammatory responses. Our global analyses revealed early anti-inflammatory responses working in concert to modulate early pro-inflammatory processes, thus preventing the host from development of pathologies by excessive or prolonged inflammation. This study is the first example of how an omic- approach can divulge the extensive, concurrent, and dynamic host responses elicited by DENV and offers plausible physiological insights to why DF is self limiting.  相似文献   
895.
Congenital heart disease (CHD) is the most frequent noninfectious cause of death at birth. The incidence of CHD ranges from 4 to 50/1,000 births (Disease and injury regional estimates, World Health Organization, 2004). Surgeries that often compromise the quality of life are required to correct heart defects, reminding us of the importance of finding the causes of CHD. Mutant mouse models and live imaging technology have become essential tools to study the etiology of this disease. Although advanced methods allow live imaging of abnormal hearts in embryos, the physiological and hemodynamic states of the latter are often compromised due to surgical and/or lengthy procedures. Noninvasive ultrasound imaging, however, can be used without surgically exposing the embryos, thereby maintaining their physiology. Herein, we use simple M-mode ultrasound to assess heart rates of embryos at E18.5 in utero. The detection of abnormal heart rates is indeed a good indicator of dysfunction of the heart and thus constitutes a first step in the identification of developmental defects that may lead to heart failure.  相似文献   
896.
A drawback of targeting soluble antigens such as cytokines or toxins with long-lived antibodies is that such antibodies can prolong the half-life of the target antigen by a “buffering” effect. This has motivated the design of antibodies that bind to target with higher affinity at near neutral pH relative to acidic endosomal pH (~pH 6.0). Such antibodies are expected to release antigen within endosomes following uptake into cells, whereas antibody will be recycled and exocytosed in FcRn-expressing cells. To understand how the pH dependence of antibody-antigen interactions affects intracellular trafficking, we generated three antibodies that bind IL-6 with different pH dependencies in the range pH 6.0–7.4. The behavior of antigen in the presence of these antibodies has been characterized using a combination of fixed and live cell fluorescence microscopy. As the affinity of the antibody:IL-6 interaction at pH 6.0 decreases, an increasing amount of antigen dissociates from FcRn-bound antibody in early and late endosomes, and then enters lysosomes. Segregation of antibody and FcRn from endosomes in tubulovesicular transport carriers (TCs) into the recycling pathway can also be observed in live cells, and the extent of IL-6 association with TCs correlates with increasing affinity of the antibody:IL-6 interaction at acidic pH. These analyses result in an understanding, in spatiotemporal terms, of the effect of pH dependence of antibody-antigen interactions on subcellular trafficking and inform the design of antibodies with optimized binding properties for antigen elimination.  相似文献   
897.
Although there have been many studies of native Korean cattle, Hanwoo, there have been no selective sweep studies in these animals. This study was performed to characterize genetic variation and identify selective signatures. We sequencedthe genomes of 12 cattle, and identified 15125420 SNPs, 1768114 INDELs, and 3445 CNVs. The SNPs, INDELs, and CNVs were similarly distributed throughout the genome, and highly variable regions were shown to contain the BoLA family and GPR180, which are related to adaptive immunity. We also identified the domestication footprints of the Hanwoo population by searching for selective sweep signatures, which revealed the RCN2 gene related to BPV resistance. The results of this study may contribute to genetic improvement of the Hanwoo population in Korea. [BMB Reports 2013; 46(7):346-351]  相似文献   
898.

Background

SLX4 encodes a DNA repair protein that regulates three structure-specific endonucleases and is necessary for resistance to DNA crosslinking agents, topoisomerase I and poly (ADP-ribose) polymerase (PARP) inhibitors. Recent studies have reported mutations in SLX4 in a new subtype of Fanconi anemia (FA), FA-P. Monoallelic defects in several FA genes are known to confer susceptibility to breast and ovarian cancers.

Methods and Results

To determine if SLX4 is involved in breast cancer susceptibility, we sequenced the entire SLX4 coding region in 738 (270 Jewish and 468 non-Jewish) breast cancer patients with 2 or more family members affected by breast cancer and no known BRCA1 or BRCA2 mutations. We found a novel nonsense (c.2469G>A, p.W823*) mutation in one patient. In addition, we also found 51 missense variants [13 novel, 23 rare (MAF<0.1%), and 15 common (MAF>1%)], of which 22 (5 novel and 17 rare) were predicted to be damaging by Polyphen2 (score = 0.65–1). We performed functional complementation studies using p.W823* and 5 SLX4 variants (4 novel and 1 rare) cDNAs in a human SLX4-null fibroblast cell line, RA3331. While wild type SLX4 and all the other variants fully rescued the sensitivity to mitomycin C (MMC), campthothecin (CPT), and PARP inhibitor (Olaparib) the p.W823* SLX4 mutant failed to do so.

Conclusion

Loss-of-function mutations in SLX4 may contribute to the development of breast cancer in very rare cases.  相似文献   
899.
Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion.  相似文献   
900.

Background

The protective effects of granulocyte colony-stimulating factor (G-CSF) have been demonstrated in a variety of renal disease models. However, the influence of G-CSF on diabetic nephropathy (DN) remains to be examined. In this study, we investigated the effect of G-CSF on DN and its possible mechanisms in a rat model.

Methods

Otsuka Long-Evans Tokushima Fatty (OLETF) rats with early DN were administered G-CSF or saline intraperitoneally. Urine albumin creatinine ratio (UACR), creatinine clearance, mesangial matrix expansion, glomerular basement membrane (GBM) thickness, and podocyte foot process width (FPW) were measured. The levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and type IV collagen genes expression in kidney tissue were also evaluated. To elucidate the mechanisms underlying G-CSF effects, we also assessed the expression of G-CSF receptor (G-CSFR) in glomeruli as well as mobilization of bone marrow (BM) cells to glomeruli using sex-mismatched BM transplantation.

Results

After four weeks of treatment, UACR was lower in the G-CSF treatment group than in the saline group (p<0.05), as were mesangial matrix expansion, GBM thickness, and FPW (p<0.05). In addition, the expression of TGF-β1 and type IV collagen and IL-1β levels was lower in the G-CSF treatment group (p<0.05). G-CSFR was not present in glomerular cells, and G-CSF treatment increased the number of BM-derived cells in glomeruli (p<0.05).

Conclusions

G-CSF can prevent the progression of DN in OLETF rats and its effects may be due to mobilization of BM cells rather than being a direct effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号