首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3022篇
  免费   201篇
  国内免费   7篇
  2024年   3篇
  2023年   11篇
  2022年   23篇
  2021年   53篇
  2020年   43篇
  2019年   63篇
  2018年   98篇
  2017年   60篇
  2016年   124篇
  2015年   163篇
  2014年   189篇
  2013年   204篇
  2012年   268篇
  2011年   310篇
  2010年   171篇
  2009年   148篇
  2008年   182篇
  2007年   193篇
  2006年   135篇
  2005年   119篇
  2004年   111篇
  2003年   91篇
  2002年   87篇
  2001年   62篇
  2000年   55篇
  1999年   40篇
  1998年   27篇
  1997年   29篇
  1996年   16篇
  1995年   16篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   10篇
  1990年   14篇
  1989年   19篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1979年   5篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有3230条查询结果,搜索用时 15 毫秒
111.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   
112.
113.
PLA (3-D-phenyllactic acid) is an ideal antimicrobial and immune regulatory compound present in honey and fermented foods. Sporolactobacillus inulinus is regarded as a potent D-PLA producer that reduces phenylpyruvate (PPA) with D-lactate dehydrogenases. In this study, PLA was produced by whole-cell bioconversion of S. inulinus ATCC 15538. Three genes encoding D-lactate dehydrogenase (d-ldh1, d-ldh2, and d-ldh3) were cloned and expressed in Escherichia coli BL21 (DE3), and their biochemical and structural properties were characterized. Consequently, a high concentration of pure D-PLA (47 mM) was produced with a high conversion yield of 88%. Among the three enzymes, D-LDH1 was responsible for the efficient conversion of PPA to PLA with kinetic parameters of Km (0.36 mM), kcat (481.10 s−1), and kcat/Km (1336.39 mM−1 s−1). In silico structural analysis and site-directed mutagenesis revealed that the Ile307 in D-LDH1 is a key residue for excellent PPA reduction with low steric hindrance at the substrate entrance. This study highlights that S. inulinus ATCC 15538 is an excellent PLA producer, equipped with a highly specific and efficient D-LDH1 enzyme.  相似文献   
114.
The gatae gene of Strongylocentrotus purpuratus is orthologous to vertebrate gata-4,5,6 genes. This gene is expressed in the endomesoderm in the blastula and later the gut of the embryo, and is required for normal development. A gatae BAC containing a GFP reporter knocked into exon one of the gene was able to reproduce all aspects of endogenous gatae expression in the embryo. To identify putative gatae cis-regulatory modules we carried out an interspecific sequence conservation analysis with respect to a Lytechinus variegatus gatae BAC, which revealed 25 conserved non-coding sequence patches. These were individually tested in gene transfer experiments, and two modules capable of driving localized reporter expression in the embryo were identified. Module 10 produces early expression in mesoderm and endoderm cells up to the early gastrula stage, while module 24 generates late endodermal expression at gastrula and pluteus stages. Module 10 was then deleted from the gatae BAC by reciprocal recombination, resulting in total loss of reporter expression in the time frame in which it is normally active. Similar deletion of module 24 led to ubiquitous GFP expression in the gastrula and pluteus. These results show that Module 10 is uniquely necessary and sufficient to account for the early phase of gatae expression during endomesoderm specification. In addition, they imply a functional cis-regulatory module exclusion, whereby only a single module can associate with the basal promoter and drive gene expression at any given time.  相似文献   
115.
116.
Lee NG  Hong YK  Yu SY  Han SY  Geum D  Cho KS 《FEBS letters》2007,581(14):2625-2632
XNP/ATRX, a causative gene of X-linked alpha-thalassemia/mental retardation syndrome, encodes an SNF2 family ATPase/helicase protein. To better understand the role of XNP/ATRX in development, we isolated and characterized a Drosophila XNP/ATRX homolog, dXNP, which contains highly conserved SNF2 and helicase domains. Ectopically expressed dXNP induced strong apoptosis in the developing eye and wing, but did not affect cell cycle progression or the expression of wingless and engrailed, essential regulators of development. The dXNP-induced apoptosis was strongly suppressed by DJNKK/hemipterous mutation, and dXNP increased JNK activity. Taken together, these results suggest that dXNP regulates apoptosis via JNK activation.  相似文献   
117.
Park SE  Song JD  Kim KM  Park YM  Kim ND  Yoo YH  Park YC 《FEBS letters》2007,581(2):180-186
The diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the apoptosis of human RPE cells. DPI treatment in ARPE-19 cells evoked a dose- and time-dependent growth inhibition, and also induced DNA fragmentation and protein content of the proapoptotic factor Bax. In addition, DPI significantly induced the expression and phosphorylation of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest. ROS have been implicated as a key factor in the activation of p53 by many chemotherapeutic drugs. Recent data on the regulation of intracellular ROS by DPI are controversial. Therefore, we analyzed whether DPI could contribute to the generation of intracellular ROS. Although there was increase in ROS level from cells treated for 24h with DPI, it was not detectable at early time points, required to induce p53 expression. And DPI-induced p53 expression was not affected by the ROS scavenger NAC. We conclude that DPI induces the expression of p53 by ROS-independent mechanism in ARPE-19 cells, and renders cells sensitive to drug-induced apoptosis by induction of p53 expression.  相似文献   
118.
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and screen a library of CPS mutants for the presence of MeOPN. Sixty eight percent of C. jejuni strains were found to express the MeOPN with a high prevalence among isolates from enteritis, Guillain Barré, and Miller-Fisher syndrome patients. In contrast, MeOPN was not observed for any of the Campylobacter coli strains examined. The MeOPN was detected on C. jejuni retrieved from cecal contents of colonized chickens demonstrating that the modification is expressed by bacteria inhabiting the avian gastrointestinal tract. In C. jejuni 11168H, the cj1415-cj1418 cluster was shown to be involved in the biosynthesis of MeOPN. Genetic complementation studies and NMR/mass spectrometric analyses of CPS from this strain also revealed that cj1421 and cj1422 encode MeOPN transferases. Cj1421 adds the MeOPN to C-3 of the beta-d-GalfNAc residue, whereas Cj1422 transfers the MeOPN to C-4 of D-glycero-alpha-L-gluco-heptopyranose. CPS produced by the 11168H strain was found to be extensively modified with variable MeOPN, methyl, ethanolamine, and N-glycerol groups. These findings establish the importance of the MeOPN as a diagnostic marker and therapeutic target for C. jejuni and set the groundwork for future studies aimed at the detailed elucidation of the MeOPN biosynthetic pathway.  相似文献   
119.
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.  相似文献   
120.
Nam JM  Jang KJ  Groves JT 《Nature protocols》2007,2(6):1438-1444
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号