首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3023篇
  免费   199篇
  国内免费   7篇
  2024年   3篇
  2023年   11篇
  2022年   28篇
  2021年   55篇
  2020年   43篇
  2019年   63篇
  2018年   97篇
  2017年   59篇
  2016年   124篇
  2015年   163篇
  2014年   188篇
  2013年   204篇
  2012年   267篇
  2011年   310篇
  2010年   172篇
  2009年   147篇
  2008年   183篇
  2007年   192篇
  2006年   134篇
  2005年   119篇
  2004年   109篇
  2003年   91篇
  2002年   87篇
  2001年   62篇
  2000年   55篇
  1999年   38篇
  1998年   27篇
  1997年   29篇
  1996年   16篇
  1995年   17篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   10篇
  1990年   14篇
  1989年   19篇
  1988年   12篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1979年   5篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有3229条查询结果,搜索用时 359 毫秒
31.
Summary Analysis of the errors caused by a drift in background fluorescence is performed for a fluorescence probe operated in a backscatter configuration. In some cases, significant errors can result if changes in background fluorophores during the course of fermentation are not accounted for. It is shown that the probe's sensitivity to background fluorophores must be considered to calibrate a fluorescence probe properly.  相似文献   
32.
33.
The individual effects of desferrioxamine B (DFOA), Na3Ca diethylenetriaminepentaacetic acid (DTPA), Na-salicylate, DL-penicillamine, and 2-aminoethylisothiouronium bromide hydrobromide, as well as the effect of mixed-ligand treatment on the retention and elimination of 95Nb in mice have been examined. It was found that 95Nb could easily be mobilized by a single dose of DFOA, but the best result was obtained with the DFOA and DTPA combination. Mixed-ligand treatment did not change the deposition characteristics and translocation kinetics of 95Nb.  相似文献   
34.
Applied Microbiology and Biotechnology - Resistant starch (RS) in the diet reaches the large intestine without degradation, where it is decomposed by the commensal microbiota. The fermentation of...  相似文献   
35.
36.
Dysfunction of glutamate neurotransmission in the nucleus accumbens (NAc) has been implicated in the pathophysiology of alcohol use disorders (AUD). Neurogranin (Ng) is exclusively expressed in the brain and mediates N‐methyl‐d ‐aspartate receptor (NMDAR) hypo‐function by regulating the intracellular calcium‐calmodulin (Ca2+‐CaM) pathway. Ng null mice (Ng–/– mice) demonstrate increased alcohol drinking compared to wild‐type mice, while also showing less tolerance to the effect of alcohol. To identify the molecular mechanism related to alcohol seeking, both in vivo microdialysis and label‐free quantification proteomics comparing Ng genotype and effects of alcohol treatment on the NAc are utilized. There is significant difference in glutamate and gamma‐aminobutyric acid (GABA) neurotransmission between genotypes; however, alcohol administration normalizes both glutamate and GABA levels in the NAc. Using label‐free proteomics, 427 protein expression changes are identified against alcohol treatment in the NAc among 4347 total proteins detected. Bioinformatics analyses reveal significant molecular differences in Ng null mice in response to acute alcohol treatment. Ingenuity pathway analysis found that the AKT network is altered significantly between genotypes, which may increase the sensitivity of alcohol in Ng null mice. The pharmacoproteomics results presented here illustrate a possible molecular basis of the alcohol sensitivity through Ng signaling in the NAc.  相似文献   
37.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
38.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   
39.
A new class of layered cathodes, Li[NixCoyB1?x?y]O2 (NCB), is synthesized. The proposed NCB cathodes have a unique microstructure in which elongated primary particles are tightly packed into spherical secondary particles. The cathodes also exhibit a strong crystallographic texture in which the ab layer planes are aligned along the radial direction, facilitating Li migration. The microstructure, which effectively suppresses the formation of microcracks, improves the cycling stability of the NCB cathodes. The NCB cathode with 1.5 mol% B delivers a discharge capacity of 234 mAh g?1 at 0.1 C and retains 91.2% of its initial capacity after 100 cycles (compared to values of 229 mAh g?1 at 0.1 C and 78.8% for pristine Li[Ni0.9Co0.1]O2). This study shows the importance of controlling the microstructure to obtain the required cycling stability, especially for Ni‐rich layered cathodes, where the main cause of capacity fading is related to mechanical strain in their charged state.  相似文献   
40.
Antimicrobial peptides are class of small, positively charged peptides known for their broad‐spectrum antimicrobial activity. Antimicrobial activities for most antimicrobial peptides have largely remained elusive, particularly in the lactic acid bacteria. However, recently our investigation using LPcin‐YK3, an antimicrobial peptide from bovine milk, suggests that in vitro antimicrobial activity was reduced over 100‐fold compared with pathogenic bacteria. Additionally, for the structural study of how antimicrobial peptide undergoes its reaction at the proteolytic pathway of lactic acid bacteria based on degradation assay and propidium iodide staining, we performed molecular docking for interaction between oligopeptide‐binding protein A and LPcin‐YK3 peptide. Given that degradation related to the LPcin‐YK3 peptide in lactic acid bacteria proteolytic system, the inhibitory inactivity of LPcin‐YK3 against beneficial lactic acid bacteria strains may be one of the primary pharmacological properties of recombinant peptide discovered in bovine milk. These results provide structural and functional insights into the proteolytic mechanism and possibility as a putative substrate of oligopeptide‐binding protein A in respect of LPcin‐YK3 peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号