首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57955篇
  免费   4824篇
  国内免费   55篇
  62834篇
  2023年   207篇
  2022年   601篇
  2021年   1033篇
  2020年   577篇
  2019年   772篇
  2018年   1192篇
  2017年   919篇
  2016年   1633篇
  2015年   2663篇
  2014年   2966篇
  2013年   3479篇
  2012年   4494篇
  2011年   4319篇
  2010年   2732篇
  2009年   2395篇
  2008年   3426篇
  2007年   3213篇
  2006年   2914篇
  2005年   2620篇
  2004年   2563篇
  2003年   2285篇
  2002年   1956篇
  2001年   1692篇
  2000年   1570篇
  1999年   1247篇
  1998年   544篇
  1997年   486篇
  1996年   413篇
  1995年   402篇
  1994年   314篇
  1993年   304篇
  1992年   647篇
  1991年   524篇
  1990年   486篇
  1989年   495篇
  1988年   415篇
  1987年   396篇
  1986年   323篇
  1985年   332篇
  1984年   277篇
  1983年   225篇
  1982年   189篇
  1981年   163篇
  1980年   161篇
  1979年   225篇
  1978年   198篇
  1977年   180篇
  1976年   170篇
  1974年   196篇
  1972年   157篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We cloned and expressed a full-length cDNA encoding a phospholipase D of type alpha (PLDalpha) from cabbage. Analysis of the cDNA predicted an 812-amino-acid protein of 92.0 kDa. The deduced amino acid sequence of cabbage PLD has 83% and 80% identity with Arabidopsis PLDalpha and castor bean PLD, respectively. Expression of this cDNA clone in E. coli shows a functional PLD activity similar to that of the natural PLD.  相似文献   
992.
Yeom SJ  Kim YS  Lim YR  Jeong KW  Lee JY  Kim Y  Oh DK 《Biochimie》2011,93(10):1659-1667
Mannose-6-phosphate isomerase catalyzes the interconversion of mannose-6-phosphate and fructose-6-phosphate. The gene encoding a putative mannose-6-phosphate isomerase from Thermus thermophilus was cloned and expressed in Escherichia coli. The native enzyme was a 29 kDa monomer with activity maxima for mannose 6-phosphate at pH 7.0 and 80 °C in the presence of 0.5 mM Zn2+ that was present at one molecule per monomer. The half-lives of the enzyme at 65, 70, 75, 80, and 85 °C were 13, 6.5, 3.7, 1.8, and 0.2 h, respectively. The 15 putative active-site residues within 4.5 Å of the substrate mannose 6-phosphate in the homology model were individually replaced with other amino acids. The sequence alignments, activities, and kinetic analyses of the wild-type and mutant enzymes with amino acid changes at His50, Glu67, His122, and Glu132 as well as homology modeling suggested that these four residues are metal-binding residues and may be indirectly involved in catalysis. In the model, Arg11, Lys37, Gln48, Lys65 and Arg142 were located within 3 Å of the bound mannose 6-phosphate. Alanine substitutions of Gln48 as well as Arg142 resulted in increase of Km and dramatic decrease of kcat, and alanine substitutions of Arg11, Lys37, and Lys65 affected enzyme activity. These results suggest that these 5 residues are substrate-binding residues. Although Trp13 was located more than 3 Å from the substrate and may not interact directly with substrate or metal, the ring of Trp13 was essential for enzyme activity.  相似文献   
993.

Background  

Clustering methods are widely used on gene expression data to categorize genes with similar expression profiles. Finding an appropriate (dis)similarity measure is critical to the analysis. In our study, we developed a new measure for clustering the genes when the key factor is the shape of the profile, and when the expression magnitude should also be accounted for in determining the gene relationship. This is achieved by modeling the shape and magnitude parameters separately in a gene expression profile, and then using the estimated shape and magnitude parameters to define a measure in a new feature space.  相似文献   
994.
T-Cell-independent B-cell tolerance to the hapten derivatives of carboxymethyl cellulose (CMC) or methyl cellulose (MC) appears to be controlled by Thy-1-, Ly-2- adherent (A) cells contained in the spleen or peritoneal fluid. Immunocompetence in nonadherent (NA) normal spleen cells could be restored in vitro by irradiated A cells from normal mice. However, NA cells reconstituted with irradiated A cells derived from hapten specifically tolerant mice failed to respond to the same hapten, but responded normally to an immunogenic challenge with another unrelated antigen. A cells that had been preincubated at 4 degrees C with hapten derivatized MC also failed to restore immunocompetence. While preincubation of unfractionated spleen cells with the tolerogen under the same conditions resulted in B-cell unresponsiveness, such treatment of NA cells failed to render B cells tolerant. Treatment of A cells from tolerant mice with the reducing agent potassium iodide (KI) in vitro restored their capacity to render cultures of NA cells immunocompetent to the relevant hapten. Moreover, treatment with KI of spleen cells from mice injected with the tolerogen was shown to render them responsive. We suggest that B-cell tolerance induced by hapten derivatives of CMC and MC is mediated by suppressive macrophages contained among A cells. Certain subpopulations of macrophages are known to exert cytotoxic effects upon target cells by the release at close range of oxidating agents. We postulate that hapten derivatized CMC and MC, through unique properties of the carrier, bind to and possibly activate macrophages rendering them specifically suppressive for hapten binding B cells.  相似文献   
995.
    
Summary Additon of pyruvate or leucine was found to be efficient for increasing the intracellular ratios of NADH/NAD and NADPH/NADP while reducing the coenzyme A concentration during the cultivation of Alcaligenes eutrophus. Poly--hydroxybutyrate (PHB) accumulation was enhanced more than 2-fold since metabolic flux of acetyl-CoA into PHB synthetic pathway could be facilitated by the changes of the cofactor concentrations.  相似文献   
996.
The requirement of DAG (diacylglycerol) to recruit PKD (protein kinase D) to the TGN (trans-Golgi network) for the targeting of transport carriers to the cell surface, has led us to a search for new components involved in this regulatory pathway. Previous findings reveal that the heterotrimeric Gbetagamma (GTP-binding protein betagamma subunits) act as PKD activators, leading to fission of transport vesicles at the TGN. We have recently shown that PKCeta (protein kinase Ceta) functions as an intermediate member in the vesicle generating pathway. DAG is capable of activating this kinase at the TGN, and at the same time is able to recruit PKD to this organelle in order to interact with PKCeta, allowing phosphorylation of PKD's activation loop. The most qualified candidates for the production of DAG at the TGN are PI-PLCs (phosphatidylinositol-specific phospholipases C), since some members of this family can be directly activated by Gbetagamma, utilizing PtdIns(4,5)P2 as a substrate, to produce the second messengers DAG and InsP3. In the present study we show that betagamma-dependent Golgi fragmentation, PKD1 activation and TGN to plasma membrane transport were affected by a specific PI-PLC inhibitor, U73122 [1-(6-{[17-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. In addition, a recently described PI-PLC activator, m-3M3FBS [2,4,6-trimethyl-N-(m-3-trifluoromethylphenyl)benzenesulfonamide], induced vesiculation of the Golgi apparatus as well as PKD1 phosphorylation at its activation loop. Finally, using siRNA (small interfering RNA) to block several PI-PLCs, we were able to identify PLCbeta3 as the sole member of this family involved in the regulation of the formation of transport carriers at the TGN. In conclusion, we demonstrate that fission of transport carriers at the TGN is dependent on PI-PLCs, specifically PLCbeta3, which is necessary to activate PKCeta and PKD in that Golgi compartment, via DAG production.  相似文献   
997.
998.
999.
Heart rate variability and postexercise heart rate recovery are used to assess cardiac parasympathetic tone in human studies, but in some cases these indexes appear to yield discordant information. We utilized pyridostigmine, an acetylcholinesterase inhibitor that selectively augments the parasympathetic efferent signal, to further characterize parasympathetic regulation of rest and postexercise heart rate. We measured time- and frequency-domain indexes of resting heart rate variability and postexercise heart rate recovery in 10 sedentary adults and 10 aerobically trained athletes after a single oral dose of pyridostigmine (30 mg) and matching placebo in randomized, double-blind, crossover trial. In sedentary adults, pyridostigmine decreased resting heart rate [from 66.7 (SD 12.6) to 58.1 beats/min (SD 7.6), P = 0.005 vs. placebo] and increased postexercise heart rate recovery at 1 min [from 40.7 (SD 10.9) to 45.1 beats/min (SD 8.8), P = 0.02 vs. placebo]. In trained athletes, pyridostigmine did not change resting heart rate or postexercise heart rate recovery when compared with placebo. Time- and frequency-domain indexes of resting heart rate variability did not differ after pyridostigmine versus placebo in either cohort and were not significantly associated with postexercise heart rate recovery in either cohort. The divergent effects of pyridostigmine on resting and postexercise measures of cardiac parasympathetic function in sedentary subjects confirm that these measures characterize distinct aspects of cardiac parasympathetic regulation. The lesser effect of pyridostigmine on either measure of cardiac parasympathetic tone in the trained athletes indicates that the enhanced parasympathetic tone associated with exercise training is at least partially attributable to adaptations in the efferent parasympathetic pathway.  相似文献   
1000.
Five pentacyclic triterpenoids isolated from Campsis grandiflora were tested for insulin-mimetic and insulin-sensitizing activity. The compounds enhanced the activity of insulin on tyrosine phosphorylation of the IR (insulin receptor) beta-subunit in CHO/IR (Chinese-hamster ovary cells expressing human IR). Among the compounds tested, CG7 (ursolic acid) showed the greatest enhancement and CG11 (myrianthic acid) the least. We characterized the effect of CG7 further, and showed that it acted as an effective insulin-mimetic agent at doses above 50 mug/ml and as an insulin-sensitizer at doses as low as 1 mug/ml. Additional experiments showed that CG7 increased the number of IRs that were activated by insulin. This indicates that a major mechanism by which CG7 enhances total IR auto-phosphorylation is by promoting the tyrosine phosphorylation of additional IRs. CG7 not only potentiated insulin-mediated signalling (tyrosine phosphorylation of the IR beta-subunit, phosphorylation of Akt and glycogen synthase kinase-3beta), but also enhanced the effect of insulin on translocation of glucose transporter 4 in a classical insulin-sensitive cell line, 3T3-L1 adipocytes. The results of the present study demonstrate that a specific pentacyclic triterpenoid, CG7, exerts an insulin-sensitizing effect as an IR activator in CHO/IR cells and adipocytes. The enhancement of insulin activity by CG7 may be useful for developing a new class of specific IR activators for treatment of Type 1 and Type 2 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号