首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7450篇
  免费   401篇
  国内免费   5篇
  2022年   95篇
  2021年   150篇
  2020年   101篇
  2019年   105篇
  2018年   150篇
  2017年   125篇
  2016年   206篇
  2015年   265篇
  2014年   314篇
  2013年   431篇
  2012年   489篇
  2011年   421篇
  2010年   281篇
  2009年   221篇
  2008年   307篇
  2007年   303篇
  2006年   238篇
  2005年   267篇
  2004年   210篇
  2003年   228篇
  2002年   199篇
  2001年   192篇
  2000年   158篇
  1999年   145篇
  1998年   74篇
  1997年   60篇
  1996年   50篇
  1995年   51篇
  1994年   48篇
  1992年   125篇
  1991年   90篇
  1990年   132篇
  1989年   100篇
  1988年   107篇
  1987年   96篇
  1986年   81篇
  1985年   94篇
  1984年   84篇
  1983年   64篇
  1982年   67篇
  1981年   87篇
  1980年   64篇
  1979年   97篇
  1978年   63篇
  1977年   66篇
  1976年   47篇
  1975年   60篇
  1974年   58篇
  1973年   49篇
  1972年   47篇
排序方式: 共有7856条查询结果,搜索用时 15 毫秒
931.
The divergently transcribed sulfur oxidation (sox) operon of a sulfur chemolithotrophs, Pseudaminobacter salicylatoxidans KCT001, comprising sox TRS-VW-XYZABCD, is regulated by a repressor (SoxR). SoxR binds to two disparate operators, sv (present in between soxS and soxV) and wx (present in between soxW and soxX). Here we report details of the interaction between SoxR and these two operator regions of the sox operon, using methylation interference and hydroxyl radical footprinting. We propose that the sv operator is symmetric and compact, while the wx operator is asymmetric and extended. We report an interesting difference between the SoxR-sv interaction and the SoxR-wx interaction through a competition assay involving groove-specific ligands. SoxR binds in the major groove of the sv operator, but binds in the minor groove of the wx operator. The structural flexibility of the SoxR helps it to act differentially in its interactions with these two operators. Mutational analysis shows that SoxR uses different amino acid residues when binding to the sv operator versus the wx operator. Taken together, the results indicate that interaction between SoxR and the two operator sites involves different binding geometries. This makes SoxR the only known example of a ArsR-family protein that binds differentially to different operators.  相似文献   
932.
Myogenic tone (MT) is a primary modulator of blood flow in the resistance vasculature of the brain, kidney, skeletal muscle, and perhaps in other high-flow organs such as the pregnant uterus. MT is known to be regulated by endothelium-derived factors, including products of the nitric oxide synthase (NOS) and/or the cyclooxygenase (COX) pathways. We asked whether pregnancy influenced MT in myometrial arteries (MA), and if so, whether such an effect could be attributed to alterations in NOS and/or COX. MA (200-300 μm internal diameter, 2-3 mm length) were isolated from 10 nonpregnant and 12 pregnant women undergoing elective hysterectomy or cesarean section, respectively. In the absence of NOS and/or COX inhibition, pregnancy was associated with increased MT in endothelium-intact MA compared with MA from nonpregnant women (P < 0.01). The increase in MT was not due to increased Ca(2+) entry via voltage-dependent channels since both groups of MA exhibited similar levels of constriction when exposed to 50 mM KCl. NOS inhibition (N(ω)-nitro-l-arginine methyl ester, l-NAME) or combined NOS/COX inhibition (l-NAME/indomethacin) increased MT in MA from pregnant women (P = 0.001 and P = 0.042, respectively) but was without effect in arteries from nonpregnant women. Indomethacin alone was without effect on MT in MA from either nonpregnant or pregnant women. We concluded that MT increases in MA during human pregnancy and that this effect was partially opposed by enhanced NOS activity.  相似文献   
933.
934.
Gupta N  Binu KB  Singh S  Maturu NV  Sharma YP  Bhansali A  Gill KD 《Gene》2012,491(1):13-19
Posttranslational modifications of proteins have profound effects on many aspects of their function and have received much attention due to the importance of these processes in epigenetic regulation. In this study, we report that deleted azoospermia associated protein 1 (DAZAP1)/proline-rich RNA binding protein (Prrp), a multifunctional RNA binding protein which is essential for spermatogenesis and normal cell growth, is acetylated at Lysine 150 within its RNA binding domain. The acetylation is predominantly observed in nuclear Prrp, and the nonacetylated form is in cytoplasm. Considering that Prrp is a shuttling protein, we suggest that the acetylation cycle at Prrp K150 regulates nucleocytoplasmic transport in cells.  相似文献   
935.
Kotkar HM  Bhide AJ  Gupta VS  Giri AP 《Gene》2012,496(1):1-7
Venoms contain highly complex mixtures that typically include hundreds of different components and have evolved independently in a diverse range of animals including platypuses, shrews, snakes, lizards, fishes, echinoderms, spiders, wasps, centipedes, sea snails, cephalopods, jellyfish and sea anemones. Many venom genes evolved through gene duplication. Gene duplication occurs in all domains of life and provides the raw substrate from which novel function arise. In this review, we focus on the role that gene duplication has played in the origin and diversification of venom genes. We outline the selective advantages of venom gene duplicates and the role that selection has played in the retention of these duplicates. We use toxin gene intermediates to help trace the evolution of toxin innovation. We also focus on other genomic processes, such as exon and domain duplications, in venom evolution. Finally, we conclude by focusing on the use of high throughput sequencing technology in understanding venom evolution.  相似文献   
936.
LC8 is present in various molecular complexes. However, its role in these complexes remains unclear. We discovered that although LC8 is a subunit of the radial spoke (RS) complex in Chlamydomonas flagella, it was undetectable in the RS precursor that is converted into the mature RS at the tip of elongating axonemes. Interestingly, LC8 dimers bound in tandem to the N-terminal region of a spoke phosphoprotein, RS protein 3 (RSP3), that docks RSs to axonemes. LC8 enhanced the binding of RSP3 N-terminal fragments to purified axonemes. Likewise, the N-terminal fragments extracted from axonemes contained LC8 and putative spoke-docking proteins. Lastly, perturbations of RSP3's LC8-binding sites resulted in asynchronous flagella with hypophosphorylated RSP3 and defective associations between LC8, RSs, and axonemes. We propose that at the tip of flagella, an array of LC8 dimers binds to RSP3 in RS precursors, triggering phosphorylation, stalk base formation, and axoneme targeting. These multiple effects shed new light on fundamental questions about LC8-containing complexes and axoneme assembly.  相似文献   
937.
Peroxisomes, single-membrane-bounded organelles with essentially oxidative metabolism, are key in plant responses to abiotic and biotic stresses. Recently, the presence of nitric oxide (NO) described in peroxisomes opened the possibility of new cellular functions, as NO regulates diverse biological processes by directly modifying proteins. However, this mechanism has not yet been analysed in peroxisomes. This study assessed the presence of S-nitrosylation in pea-leaf peroxisomes, purified S-nitrosylated peroxisome proteins by immunoprecipitation, and identified the purified proteins by two different mass-spectrometry techniques (matrix-assisted laser desorption/ionization tandem time-of-flight and two-dimensional nano-liquid chromatography coupled to ion-trap tandem mass spectrometry). Six peroxisomal proteins were identified as putative targets of S-nitrosylation involved in photorespiration, β-oxidation, and reactive oxygen species detoxification. The activity of three of these proteins (catalase, glycolate oxidase, and malate dehydrogenase) is inhibited by NO donors. NO metabolism/S-nitrosylation and peroxisomes were analysed under two different types of abiotic stress, i.e. cadmium and 2,4-dichlorophenoxy acetic acid (2,4-D). Both types of stress reduced NO production in pea plants, and an increase in S-nitrosylation was observed in pea extracts under 2,4-D treatment while no total changes were observed in peroxisomes. However, the S-nitrosylation levels of catalase and glycolate oxidase changed under cadmium and 2,4-D treatments, suggesting that this post-translational modification could be involved in the regulation of H(2)O(2) level under abiotic stress.  相似文献   
938.
939.
Tropomyosin-receptor-kinase B (TrkB receptor) activation plays an important role in the survival of retinal ganglion cells (RGCs). This study reports a novel finding that, SH2 domain-containing phosphatase-2 (Shp-2) binds to the TrkB receptor in RGCs and negatively regulates its activity under glaucomatous stress. This enhanced binding of TrkB and Shp2 is mediated through caveolin. Caveolin 1 and 3 undergo hyper-phosphorylation in RGCs under stress and bind to the Shp2 phosphatase. Shp2 undergoes activation under glaucomatous stress conditions in RGCs in vivo with a concurrent loss of TrkB activity. Inhibiting the Shp2 phosphatase restored TrkB activity in cells exposed to excitotoxic and oxidative stress. Collectively, these findings implicate a molecular basis of Shp2 mediated TrkB deactivation leading to RGC degeneration observed in glaucoma.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号