首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1559篇
  免费   73篇
  2022年   10篇
  2021年   23篇
  2020年   15篇
  2019年   18篇
  2018年   27篇
  2017年   27篇
  2016年   29篇
  2015年   44篇
  2014年   58篇
  2013年   81篇
  2012年   113篇
  2011年   85篇
  2010年   65篇
  2009年   34篇
  2008年   61篇
  2007年   67篇
  2006年   61篇
  2005年   51篇
  2004年   39篇
  2003年   44篇
  2002年   38篇
  2001年   49篇
  2000年   39篇
  1999年   40篇
  1998年   17篇
  1997年   17篇
  1996年   13篇
  1995年   18篇
  1994年   18篇
  1993年   10篇
  1992年   25篇
  1991年   38篇
  1990年   34篇
  1989年   29篇
  1988年   31篇
  1987年   26篇
  1986年   15篇
  1985年   12篇
  1984年   12篇
  1983年   12篇
  1981年   12篇
  1979年   19篇
  1978年   12篇
  1975年   9篇
  1974年   9篇
  1973年   15篇
  1972年   11篇
  1971年   15篇
  1970年   13篇
  1969年   14篇
排序方式: 共有1632条查询结果,搜索用时 15 毫秒
991.
Chickpea stunt disease caused by Chickpea chlorotic dwarf virus (CpCDV) (genus Mastrevirus, family Geminiviridae) is the most important biotic stress affecting chickpea crops worldwide. A survey conducted on the incidence of stunt disease clearly revealed high incidence of the disease with severe symptom expression in both indigenous and imported genotypes. To manage the disease in a sustainable way, resistant genotypes need to be bred by adopting objective and precise assessment of the disease response of chickpea genotypes. At present, evaluation of CpCDV resistance is conducted on the basis of natural infection in the field, which is bound to be erroneous due to vagaries in vector population. To circumvent the above problems, we devised an agroinoculation technique that involves the delivery of viral genomic DNA through Agrobacterium tumefaciens. An objective scoring system assigning quantitative value to different symptoms has been evolved to assess the response of chickpea genotypes to CpCDV inoculation. Using the inoculation and scoring techniques, we screened 70 genotypes, which helped in differentiating field resistance that is more due to resistance to vector feeding than resistance to the virus.  相似文献   
992.
993.
BacoMind is an enriched phytochemical composition of Bacopa monniera (B. monniera), a common medicinal plant used in the traditional systems of medicine as a memory-enhancing agent. BacoMind was standardized with reference to bioactive compounds and was evaluated for short-term safety and tolerability in healthy adult volunteers. The study plan employed randomized, open label, dose escalation design. Each of 23 participants were orally given one single capsule of BacoMind daily for 30 days, i.e., 300 mg for first 15 days and 450 mg for next 15 days. Detailed examination of clinical, hematological, biochemical and electrocardiographic parameters done in pre and post-treatment periods did not indicate any untoward effects in any of the treated volunteers. Mild adverse events related to gastrointestinal system were observed in the trial, which subsided spontaneously. BacoMind was found to meet the safety criteria at the dose administered for the given duration of trial period in healthy adult volunteers.  相似文献   
994.
The study of the flood-waters revealed that the breach of irrigation channels due to heavy downpour, triggered the floods, as the first flood-waters largely contained characteristic riverine fauna. Later on, the riverine fauna was outnumbered by pond fauna indicating the overflow from ponds, adding to the amount of flood-waters. The flood-waters play a significant role in the distribution of animals in general and vectors in particular. The chief vectors included Cyclops, Lymnaea, Planorbis and five genera of fishes. Pockets of stagnant flood-water provide a breeding ground for mosquitoes to create a future nuisance. The faunal study of flood-waters offers a proof to their origin, which otherwise requires a manual survey.  相似文献   
995.
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.  相似文献   
996.
3D QSAR studies on the title compounds led to the development of a model with three biophoric sites and six secondary sites viz. H-acceptor (ACC), H-donor (DON), heteroatom (presence), hydrophobic (hydrophobicity), steric (refractivity), and a ring (presence) along with total hydrophobicity and total refractivity as global properties. The model predicted the test set of compounds reasonably well. Three of the five newly synthesized 2-substituted octahydropyrazinopyridoindoles have shown potent antihistaminic H1 activity with less toxicity and sedation potential.  相似文献   
997.
998.
The discovery of a large number of genes encoding cellulose synthases and related glycosyltransferases in plants has led to a renewed interest in the biosynthesis of cell-wall polysaccharides. A number of approaches, including virus-induced gene silencing have proven useful in the functional analysis of these genes. X-ray analysis of the structures of a few glycosyltransferases has led to the identification and confirmation of the role of conserved residues within this group of enzymes. Analysis of related enzymes has provided useful information on the possible domain organization of cellulose synthases and the requirement for at least two separate glycosyltransferase activities in the processive synthesis of sugar chains.  相似文献   
999.
Eighteen yeast species belonging to seven genera were isolated from ten samples of nectar from Hibiscus rosa sinensis and investigated for xylitol production using d-xylose as sole carbon source. Amongst these isolates, no. 10 was selected as the best xylitol producer and identified as Candida tropicalis on the basis of morphological, biochemical and 26S rDNA sequencing. C. tropicalis produced 12.11 gl−1 of xylitol in presence of 50 gl−1 of xylose in 72 h at pH 5, 30°C and 200 rpm. The strain of C. tropicalis obtained through xylose enrichment technique has resulted in a yield of 0.5 gg−1 with a xylitol volumetric productivity of 1.07 gl−1h−1 in the presence of 300 gl−1 of xylose through batch fermentation. This organism has been reported for the first time from Hibiscus rosa sinensis flowers. Realizing, the importance of this high valued compound, as a sugar substitute, xylose enrichment technique was developed in order to utilize even higher concentrations of xylose as substrate for maximum xylitol production.  相似文献   
1000.
X-ray crystallography has been a useful tool in the development of site-directed spin labeling by resolving rotamers of the nitroxide spin-label side chain in a variety of α-helical environments. In this work, the crystal structure of a doubly spin-labeled N8C/K28C mutant of the B1 immunoglobulin-binding domain of protein G (GB1) was solved. The double mutant formed a domain-swapped dimer under crystallization conditions. Two rotameric states of the spin-label were resolved at the solvent-exposed α-helical site, at residue 28; these are in good agreement with rotamers previously reported for helical structures. The second site, at residue 8 on an interior β-strand, shows the presence of three distinct solvent-exposed side-chain rotamers. One of these rotamers is rarely observed within crystal structures of R1 sites and suggests that the H(α) and S(δ) hydrogen bond that is common to α-helical sites is absent at this interior β-strand residue. Variable temperature continuous wave (CW) experiments of the β-strand site showed two distinct components that were correlated to the rotameric states observed in crystallography. Interestingly, the CW data at room temperature could be fit without the use of an order parameter, which is consistent with the lack of the H(α) and S(δ) interaction. Additionally, double electron electron resonance (DEER) spectroscopy was performed on the GB1 double mutant in its monomeric form and yielded a most probable interspin distance of 25 ± 1 ?. In order to evaluate the accuracy of the measured DEER distance, the rotamers observed in the crystal structure of the domain-swapped GB1 dimer were modeled into a high-resolution structure of the wild type monomeric GB1. The distances generated in the resulting GB1 structural models match the most probable DEER distance within ~2 ?. The results are interesting as they indicate by direct experimental measurement that the rotameric states of R1 found in this crystal provide a very close match to the most probable distance measured by DEER.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号