首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2850篇
  免费   189篇
  国内免费   2篇
  2023年   4篇
  2022年   13篇
  2021年   35篇
  2020年   24篇
  2019年   30篇
  2018年   36篇
  2017年   29篇
  2016年   61篇
  2015年   114篇
  2014年   110篇
  2013年   164篇
  2012年   212篇
  2011年   190篇
  2010年   124篇
  2009年   139篇
  2008年   211篇
  2007年   227篇
  2006年   213篇
  2005年   230篇
  2004年   213篇
  2003年   178篇
  2002年   159篇
  2001年   20篇
  2000年   10篇
  1999年   24篇
  1998年   25篇
  1997年   31篇
  1996年   23篇
  1995年   22篇
  1994年   19篇
  1993年   14篇
  1992年   19篇
  1991年   9篇
  1990年   12篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1968年   2篇
排序方式: 共有3041条查询结果,搜索用时 15 毫秒
991.
Protein glutaminase, which converts a protein glutamine residue to a glutamate residue, is expected to be useful as a new food-processing enzyme. The crystal structures of the mature and pro forms of the enzyme were refined at 1.15 and 1.73 ? resolution, respectively. The overall structure of the mature enzyme has a weak homology to the core domain of human transglutaminase-2. The catalytic triad (Cys-His-Asp) common to transglutaminases and cysteine proteases is located in the bottom of the active site pocket. The structure of the recombinant pro form shows that a short loop between S2 and S3 in the proregion covers and interacts with the active site of the mature region, mimicking the protein substrate of the enzyme. Ala-47 is located just above the pocket of the active site. Two mutant structures (A47Q-1 and A47Q-2) refined at 1.5 ? resolution were found to correspond to the enzyme-substrate complex and an S-acyl intermediate. Based on these structures, the catalytic mechanism of protein glutaminase is proposed.  相似文献   
992.
PRIP (phospholipase C-related, but catalytically inactive protein) is a novel protein isolated in this laboratory. PRIP-deficient mice showed increased serum gonadotropins, but decreased gonadal steroid hormones. This imbalance was similar to that for the cause of bone disease, such as osteoporosis. In the present study, therefore, we analyzed mutant mice with special reference to the bone property. We first performed three-dimensional analysis of the femur of female mice. The bone mineral density and trabecular bone volume were higher in mutant mice. We further performed histomorphometrical assay of bone formation parameters: bone formation rate, mineral apposition rate, osteoid thickness, and osteoblast number were up-regulated in the mutant, indicating that increased bone mass is caused by the enhancement of bone formation ability. We then cultured primary cells isolated from calvaria prepared from both genotypes. In mutant mice, osteoblast differentiation, as assessed by alkaline phosphatase activity and the expression of osteoblast differentiation marker genes, was enhanced. Moreover, we analyzed the phosphorylation of Smad1/5/8 in response to bone morphogenetic protein, with longer phosphorylation in the mutant. These results indicate that PRIP is implicated in the negative regulation of bone formation.  相似文献   
993.
The dynactin complex is required for activation of the dynein motor complex, which plays a critical role in various cell functions including mitosis. During metaphase, the dynein-dynactin complex removes spindle checkpoint proteins from kinetochores to facilitate the transition to anaphase. Three components (p150(Glued), dynamitin, and p24) compose a key portion of the dynactin complex, termed the projecting arm. To investigate the roles of the dynactin complex in mitosis, we used RNA interference to down-regulate p24 and p150(Glued) in human cells. In response to p24 down-regulation, we observed cells with delayed metaphase in which chromosomes frequently align abnormally to resemble a "figure eight," resulting in cell death. We attribute the figure eight chromosome alignment to impaired metaphasic centrosomes that lack spindle tension. Like p24, RNA interference of p150(Glued) also induces prometaphase and metaphase delays; however, most of these cells eventually enter anaphase and complete mitosis. Our findings suggest that although both p24 and p150(Glued) components of the dynactin complex contribute to mitotic progression, p24 also appears to play a role in metaphase centrosome integrity, helping to ensure the transition to anaphase.  相似文献   
994.

Background

Members of the ErbB family of the receptor protein tyrosine kinase superfamily mediate heregulin (HRG)-induced cell responses. Here we investigated HRG activation of ErbB receptors, and the role of this activation in the development of the permeability barrier in airway epithelial cells (AECs).

Methods

Two airway epithelial-like cell lines, Calu-3 and 16HBE were exposed to HRG or no stimulus and were evaluated with respect to their paracellular permeability as determined by transepithelial electric resistance (TER) and fluorescein isothiocyanate (FITC)-dextran flux. Tight junctions (TJs) were assessed by immunocytochemical localization of occludin and zonula occludens-1.

Results

HRG promoted the development of the permeability barrier and TJ formation by monolayers of Calu-3 and 16HBE cells. Calu-3 cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4, on their surface. ErbB3 knockdown by small interference RNA (siRNA) blunted the effects of HRG on the permeability barrier. ErbB3 is known as a kinase-dead receptor and relies on other members of the family for its phosphorylation. To identify its heterodimerization partner, we knocked down the expression of other ErbB family receptors. We found that HRG's effect on the permeability barrier could be significantly attenuated by transfecting cells with ErbB2 siRNA but not with EGFR siRNA.

Conclusion

These results indicate that HRG activation of ErbB2/ErbB3 heterodimers is essential for regulation of the permeability barrier in AECs.  相似文献   
995.
996.
997.
Although H5N1 influenza A viruses can cause systemic infection, their neurotropism and long-term effects on the central nervous system (CNS) are not fully understood. We assessed H5N1viral invasion of the CNS and its long-term effects in a ferret model. An H5N1 virus caused nonsuppurative encephalitis, which lasted for 3 months without neurologic signs. Further, another H5N1 virus caused nonsuppurative vasculitis with brain hemorrhage. Three-dimensional analysis of viral distribution in the brain identified the olfactory system as a major route for brain invasion. The efficient growth of virus in the upper respiratory tract may thus facilitate viral brain invasion.  相似文献   
998.
Although oral exposure to H5N1 highly pathogenic avian influenza viruses is a risk factor for infection in humans, it is unclear how oral exposure to these virus results in lethal respiratory infections. To address this issue, we inoculated ferrets and hamsters with two highly pathogenic H5N1 strains. These viruses, inoculated directly into the stomach, were isolated from the large intestine and the mesenteric lymph nodes within 1 day of inoculation and subsequently spread to multiple tissues, including lung, liver, and brain. Histopathologic analysis of ferrets infected with virus via direct intragastric inoculation revealed lymph folliculitis in the digestive tract and mesenteric lymph nodes and focal interstitial pneumonia. Comparable results were obtained with the hamster model. We conclude that, in mammals, ingested H5N1 influenza viruses can disseminate to nondigestive organs, possibly through the lymphatic system of the gastrointestinal tract.  相似文献   
999.
Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.  相似文献   
1000.
We designed a phenylglycine (Phg)-incorporated ascidiacyclamide (ASC) analogue, cyclo(-Phg-oxazoline-d-Val-thiazole-Ile-oxazoline-d-Val-thiazole- ([Phg]ASC), with the aim of stabilizing the square conformation of ASC through interactions between amino acid side chains. X-ray diffraction analysis showed that [Phg]ASC has a square structure, similar to ASC, in which the sec-butyl group of Ile and the benzene ring of Phg are in close proximity. Consistent with that finding, 1H NMR experiments revealed significant high-field shifts in the sec-butyl group of Ile, which suggests a potential for CH/π interactions between the sec-butyl group of Ile and the benzene ring of Phg. The CD spectra of [Phg]ASC were less affected by TFE titration or increasing temperature than those of ASC. In addition, [Phg]ASC showed approximately three times greater toxicity toward HL-60 cells than ASC. Thus the potently cytotoxic conformation of [Phg]ASC may be stabilized by CH/π interactions between the side chains of the Ile and Phg residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号