首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2847篇
  免费   189篇
  国内免费   2篇
  2023年   3篇
  2022年   11篇
  2021年   35篇
  2020年   24篇
  2019年   30篇
  2018年   36篇
  2017年   29篇
  2016年   61篇
  2015年   114篇
  2014年   110篇
  2013年   164篇
  2012年   212篇
  2011年   190篇
  2010年   124篇
  2009年   139篇
  2008年   211篇
  2007年   227篇
  2006年   213篇
  2005年   230篇
  2004年   213篇
  2003年   178篇
  2002年   159篇
  2001年   20篇
  2000年   10篇
  1999年   24篇
  1998年   25篇
  1997年   31篇
  1996年   23篇
  1995年   22篇
  1994年   19篇
  1993年   14篇
  1992年   19篇
  1991年   9篇
  1990年   12篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1968年   2篇
排序方式: 共有3038条查询结果,搜索用时 296 毫秒
81.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   
82.
83.
84.
Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), but the identity of the major Nod1 stimulatory molecule produced by bacteria remains unknown. Here we show that bacteria produce lipophilic molecules capable of stimulating Nod1. Analysis of synthetic compounds revealed stereoselectivity of the DAP residue and that conjugation of lipophilic acyl residues specifically enhances the Nod1 stimulatory activity of the core iE-DAP. Furthermore, we demonstrate that lipophilic molecules induce and/or enhance the secretion of innate immune mediators from primary mouse mesothelial cells and human monocytic MonoMac6 cells, and this effect is mediated through Nod1. These results provide insight into the mechanism of immune recognition via Nod1, which might be useful in the design and testing of novel immunoregulators.  相似文献   
85.
Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.  相似文献   
86.
A simple and sensitive high-performance liquid chromatography (HPLC) method utilizing UV detection was developed for the determination of plasma pyrrole (Py)-imidazole (Im) polyamides in rats and applied to the pharmacokinetic study of compounds. After deproteinization of plasma with methanol, Py-Im polyamides were analyzed with a reversed-phase TSK-GEL ODS-80TM (4.6 mmx15.0 cm TOSOH Co., Japan) column maintained at 40 degrees C. The mobile phase solvent A was 0.1% acetic acid and the solvent B was HPLC-grade acetonitrile (0-10 min, A: 100-20%, B: 0-80% linear gradient; 10-15 min, A: 40%, B: 60%). The flow rate was 1.0 ml/min. The detection wavelength was set at 310 nm. The method was used to determine the plasma concentration time profiles of Py-Im polyamides after intravenous injection.  相似文献   
87.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
88.
Sleep and Biological Rhythms - Idiopathic hypersomnia (IH) is a rare sleep disorder characterized by excessive daytime sleepiness, great difficulty upon awakening, and prolonged sleep time. In...  相似文献   
89.
Sleep and Biological Rhythms - Sleep problems and obstructive sleep apnea (OSA) increase with age and disturb life in old age. Positional therapy is one option to treat OSA, but the differences in...  相似文献   
90.
The glomerulus is a network of capillaries known as a tuft, located at the beginning of a nephron in the kidney. Here we describe a novel method for the induction of a macroscopically visible three-dimensional glomerulus-like sphere (GLS). This procedure did not require any additional cytokines and completed the formation of spheres within 24?h. After the formation was complete, GLS maintained a steady state for at least five days without proliferation and without a decrease in viability. Therefore, this procedure assists various assays for a prolong period of time. Overall, our protocol allows for a very simple mixing of cells from different sources to obtain fine-grained and highly dispersed GLSs. The kidney filtration barrier is a unique structure characterized by a complex three-dimensional framework of podocytes and endothelial cells. GLS exhibited the induction of many podocyte-specific gene profiles similar to those in adult human kidneys, suggesting that the sphere formation process is important for the maturation of podocytes. Focal segmental glomerulosclerosis (FSGS) is one of the major causes of steroid-resistant nephrotic syndrome, and some circulating permeability factors in the patient's serum FSGS have been implicated in the pathogenesis of the disease. Serum from patients with FSGS induced the collapse of GLS, which imitates the appearance of glomerulosclerosis in patients. In conclusion, the investigation and use of GLS may provide a novel method to elucidate the molecular mechanisms underlying complicated and unexplained events in glomeruli in a similar condition in adult kidneys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号