首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1719篇
  免费   80篇
  国内免费   1篇
  1800篇
  2022年   10篇
  2021年   20篇
  2020年   17篇
  2019年   14篇
  2018年   25篇
  2017年   28篇
  2016年   21篇
  2015年   55篇
  2014年   62篇
  2013年   117篇
  2012年   91篇
  2011年   98篇
  2010年   57篇
  2009年   39篇
  2008年   75篇
  2007年   70篇
  2006年   74篇
  2005年   89篇
  2004年   63篇
  2003年   68篇
  2002年   64篇
  2001年   52篇
  2000年   43篇
  1999年   46篇
  1998年   24篇
  1997年   13篇
  1996年   15篇
  1995年   15篇
  1994年   15篇
  1993年   10篇
  1992年   23篇
  1991年   19篇
  1990年   22篇
  1989年   35篇
  1988年   21篇
  1987年   27篇
  1986年   35篇
  1985年   25篇
  1984年   29篇
  1983年   14篇
  1982年   16篇
  1981年   19篇
  1980年   8篇
  1978年   8篇
  1974年   13篇
  1973年   11篇
  1972年   8篇
  1969年   11篇
  1968年   10篇
  1967年   9篇
排序方式: 共有1800条查询结果,搜索用时 15 毫秒
31.
ABSTRACT

Methyl-β-cyclodextrin (MβCD) is an effective agent for the removal of plasma membrane cholesterol. In this study, we investigated the modulating effects of MβCD on the antiproliferation induced by benzyl isothiocyanate (BITC), an ITC compound mainly derived from papaya seeds. We confirmed that MβCD dose-dependently increased the cholesterol level in the medium, possibly through its removal from the plasma membrane of human colorectal cancer cells. The pretreatment with a non-toxic concentration (2.5 mM) of MβCD significantly enhanced the BITC-induced cytotoxicity and apoptosis induction, which was counteracted by the cholesterol supplementation. Although BITC activated the phosphoinositide 3-kinase (PI3K)/Akt pathway, MβCD dose-dependently inhibited the phosphorylation level of Akt. On the contrary, the treatment of MβCD enhanced the phosphorylation of mitogen activated protein kinases, but did not potentiate their BITC-induced phosphorylation. These results suggested that MβCD might potentiate the BITC-induced anti-cancer by cholesterol depletion and thus inhibition of the PI3K/Akt-dependent survival pathway.

Abbreviations: CDs: cyclodextrins; MβCD: methyl-β-cyclodextrin; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; PI3K: phosphoinositide 3-kinase; PDK1: phosphoinositide-dependent kinase-1; MAPK: mitogen activated protein kinase; ERK1/2: extracellular signal-regulated kinase1/2; JNK: c-Jun N-terminal kinase; PI: propidium iodide; FBS: fatal bovine serum; TLC: thin-layer chromatography; PBS(-): phosphate-buffered saline without calcium and magnesium; MEK: MAPK/ERK kinase; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-trisphosphate  相似文献   
32.
Licorice (Glycyrrhiza uralensis) is a medicinal plant that contains glycyrrhizin (GL), which has various pharmacological activities. Because licorice is a legume, it can establish a symbiotic relationship with nitrogen-fixing rhizobial bacteria. However, the effect of this symbiosis on GL production is unknown. Rhizobia were isolated from root nodules of Glycyrrhiza glabra, and a rhizobium that can form root nodules in G. uralensis was selected. Whole-genome analysis revealed a single circular chromosome of 6.7 Mbp. This rhizobium was classified as Mesorhizobium by phylogenetic analysis and was designated Mesorhizobium sp. J8. When G. uralensis plants grown from cuttings were inoculated with J8, root nodules formed. Shoot biomass and SPAD values of inoculated plants were significantly higher than those of uninoculated controls, and the GL content of the roots was 3.2 times that of controls. Because uninoculated plants from cuttings showed slight nodule formation, we grew plants from seeds in plant boxes filled with sterilized vermiculite, inoculated half of the seedlings with J8, and grew them with or without 100 µM KNO3. The SPAD values of inoculated plants were significantly higher than those of uninoculated plants. Furthermore, the expression level of the CYP88D6 gene, which is a marker of GL synthesis, was 2.5 times higher than in inoculated plants. These results indicate that rhizobial symbiosis promotes both biomass and GL production in G. uralensis.  相似文献   
33.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   
34.
35.
Naringenin-7-β-kojibioside, -7-β-sophoroside, -7-[α-d-galactosyl(l→2)β-d-glucoside], -7-[β-d-glucosyl(l→2)β-d-galactoside], and also hesperetin-7-β-kojibioside and -7-β-sophoroside were prepared by the coupling of naringenin or hesperetin with the α-acetobromo derivatives of the appropriate disaccharides, followed by saponification.

Their relative bitterness values were discussed in comparison with naringin and neo-hesperidin.  相似文献   
36.
Using two radioimmunoassays (RIAs) for endothelin-1 (ET-1) with and without a substantial cross-reactivity with ET-3, we have measured the plasma ET-1-like immunoreactivity (-LI) level in rat plasma. ET-1-LI was detected in plasma from male Wistar rats. ET-1-LI in rat plasma consisted of three components with molecular weights of 6K, 4K and 2.5K daltons by gel permeation chromatography. Two of the components were eluted at positions of big ET (4K) and synthetic ET-1 (2.5K). The remaining component was eluted at the preceding fraction (6K). No difference was observed in ET-1-LI of the small molecular form of ET (2.5K) between the two RIAs. Thus, there is little or no ET-3 in rat plasma, which has the sequence found originally in the rat genome. The concentration of the small molecular form of ET, presumably ET-1, in rat plasma was about 4 pg/ml.  相似文献   
37.
38.
39.
Rho small GTPase regulates cell morphology, adhesion and cytokinesis through the actin cytoskeleton. We have identified a protein, p140mDia, as a downstream effector of Rho. It is a mammalian homolog of Drosophila diaphanous, a protein required for cytokinesis, and belongs to a family of formin-related proteins containing repetitive polyproline stretches. p140mDia binds selectively to the GTP-bound form of Rho and also binds to profilin. p140mDia, profilin and RhoA are co-localized in the spreading lamellae of cultured fibroblasts. They are also co-localized in membrane ruffles of phorbol ester-stimulated sMDCK2 cells, which extend these structures in a Rho-dependent manner. The three proteins are recruited around phagocytic cups induced by fibronectin-coated beads. Their recruitment is not induced after Rho is inactivated by microinjection of botulinum C3 exoenzyme. Overexpression of p140mDia in COS-7 cells induced homogeneous actin filament formation. These results suggest that Rho regulates actin polymerization by targeting profilin via p140mDia beneath the specific plasma membranes.  相似文献   
40.
OMP85 is a highly conserved outer membrane protein in all Gram-negative bacteria. We studied an uncharacterized OMP85 homolog of Porphyromonas gingivalis, a primary periodontal pathogen forming subgingival plaque biofilms. Using an outer-loop peptide antibody specific for the OMP85 of P. gingivalis, loop-3 Ab, we found a difference in the mobility of OMP85 on SDS-PAGE gel between the P. gingivalis wild-type and the isogenic galE mutant, a deglycosylated strain, suggesting that OMP85 naturally exists in a glycosylated form. This was also supported by a shift in OMP85 PAGE mobility after chemical deglycosylation treatment. Further, loop-3 Ab cross-reacted with the galE mutant stronger than the wild-type strain; and could inhibit biofilm formation in the galE mutant more than in the wild-type strain. In conclusion, this is the first report providing the evidence of OMP85 glycosylation and the involvement of OMP85 in biofilm formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号