首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4359篇
  免费   250篇
  国内免费   6篇
  4615篇
  2023年   15篇
  2022年   48篇
  2021年   75篇
  2020年   40篇
  2019年   50篇
  2018年   80篇
  2017年   61篇
  2016年   110篇
  2015年   162篇
  2014年   165篇
  2013年   273篇
  2012年   251篇
  2011年   276篇
  2010年   151篇
  2009年   159篇
  2008年   248篇
  2007年   248篇
  2006年   206篇
  2005年   216篇
  2004年   217篇
  2003年   193篇
  2002年   196篇
  2001年   110篇
  2000年   91篇
  1999年   99篇
  1998年   43篇
  1997年   44篇
  1996年   32篇
  1995年   30篇
  1994年   30篇
  1993年   40篇
  1992年   56篇
  1991年   64篇
  1990年   62篇
  1989年   57篇
  1988年   55篇
  1987年   38篇
  1986年   47篇
  1985年   41篇
  1984年   30篇
  1983年   24篇
  1982年   11篇
  1981年   17篇
  1980年   17篇
  1979年   22篇
  1978年   18篇
  1977年   13篇
  1976年   9篇
  1974年   9篇
  1973年   9篇
排序方式: 共有4615条查询结果,搜索用时 15 毫秒
61.
62.
Phoborhodopsin, a repellent phototaxis receptor in Halobacterium halobium, exhibits vibrational fine structure, a feature that has not been identified for any other rhodopsin pigment at physiological temperatures. This conclusion follows form analysis of the absorption properties of the pigment in H. halobium membranes containing native retinal and an array of retinal analogues. The absorption spectrum of the native pigment has a maximum at 487 nm with a pronounced shoulder at 460 nm; however, the bandwidth is that expected for a single retinylidene species. Gaussian band-shape simulation with a spacing corresponding to the vibrational frequencies of polyene stretching modes reproduces the structured absorption spectra of native pigment as well as of analogue phoborhodopsin. Absorption shifts produced by a series of dihydroretinal and other retinal analogues strongly indicate that the dominant factor regulating the color of the pigment is planarization of the retinal ring with respect to the polyene chain.  相似文献   
63.
Stimulant-induced viability of neutrophils, nuclear-fragmentation, increase in intracellular calcium ([Ca2+]i), expression of annexin V on neutrophils and proteolysis of a fluorogenic peptide substrate Ac-DEVD-MCA (acetyl Asp-Glu-Val-Asp alpha-[4-methyl-coumaryl-7-amide]) by neutrophil lysates from five normal calves and three calves with leucocyte adhesion deficiency were determined to evaluate the apoptosis of normal and CD18-deficient neutrophils. Viability was markedly decreased in control neutrophils stimulated with opsonized zymosan (OPZ), compared to CD18-deficient neutrophils at 37 degrees C after incubation periods of 6 and 24 hours. The rate of apoptosis of control neutrophils stimulated with OPZ increased significantly depending on the incubation time, whereas no apparent increase in apoptosis was found in CD18-deficient neutrophils under the same conditions. Aggregated bovine (Agg) IgG-induced apoptosis of control neutrophils was not significantly different from that of CD18-deficient neutrophils. The expression of annexin V on OPZ-stimulated control neutrophils was greater than that of unstimulated ones 6 h after stimulation. No apparent increase in annexin V expression on CD18-deficient neutrophils was found with OPZ stimulation. A delay in apoptosis was demonstrated in CD18-deficient bovine neutrophils and this appeared to be closely associated with lowered signalling via [Ca2+]i, diminished annexin V expression on the cell surface, and decreased caspase 3 activity in lysates.  相似文献   
64.
The inclusion of phloridzin into beta-cyclodextrin was studied as a model of molecular recognition in membranes. Effects on 1H NMR spectra and NOE correlational peaks between phloridzin and beta-cyclodextrin were observed in the complex. Strong NOEs were observed between hydrogens of a phenol group in phloridzin and beta-cyclodextrin. The three-dimensional structure of the inclusion complex between phloridzin and beta-cyclodextrin was simulated with distance constraints estimated by the intensity of NOE peaks using the DADAS90 programs. Two inclusion possibilities were suggested-the large rim of beta-cyclodextrin as an entrance of the inclusion and the small rim of beta-cyclodextrin as the entrance. In both cases, the phenol group of phloridzin was included in the hydrophobic space of beta-cyclodextrin.  相似文献   
65.
It has been shown that mammalian neurogenesis is partly controlled by multiple basic helix–loop–helix (bHLH) genes, as inDrosophila.Recently, mouse homologs ofDrosophila atonal,a proneural gene encoding a bHLH protein required for chordotonal organ and photoreceptor development, have been characterized to obtain further insights into the molecular nature of mammalian neurogenesis. Here, to assess their potential involvement in genetic neural disorders, we have determined genetic map positions for four mouseatonal-related genes,Atoh1, Atoh2, Atoh3,andNdrf,which encode MATH-1, MATH-2, MATH-3, and NDRF, respectively. Interspecific backcross analysis indicated thatAtoh1andAtoh2were located in separate positions of Chr 6 and thatAtoh3andNdrfwere mapped to Chr 10 and Chr 11, respectively. Thus, these structurally related genes are located separately on multiple chromosomes.  相似文献   
66.
67.
68.
Although diverse peptides are known to affect invertebrate cardiac activity, the peptidergic regulation of the cardiovascular system of Aplysia is still poorly understood. Asn-D-Trp-Phe-NH(2) (NdWFamide) is a recently purified cardioactive peptide in Aplysia. Pharmacological experiments showed that NdWFamide was one of the most potent cardioexcitatory peptides among the known endogenous cardioactive peptides in Aplysia. NdWFamide-immunopositive neuronal processes were abundant in the cardiovascular region of Aplysia, and many of them originated from neurosecretory cells in the abdominal ganglion (R3-R13 cells). The data suggest that NdWFamide is a cardioexcitatory peptide utilized by R3-R13 cells of Aplysia.  相似文献   
69.
Activated protein C (APC) has an anticoagulant action and plays an important role in blood coagulation homeostasis. In addition to its anticoagulant action, APC is known to have cytoprotective effects, such as anti‐apoptotic action and endothelial barrier protection, on vascular endothelial cells and monocytes. However, the effects of APC on DCs have not been clarified. To investigate the effects of APC on human DCs, monocytes were isolated from peripheral blood and DC differentiation induced with LPS. APC significantly inhibited the production of inflammatory cytokines TNF‐α and IL‐6 during differentiation of immature DCs to mature DCs, but did not inhibit the production of IL‐12 and anti‐inflammatory cytokine IL‐10. Interestingly, treatment with 5 μg/mL, but not 25 μg/mL, of APC significantly enhanced production of IL‐10. In addition, protein C, which is the zymogen of APC, did not affect production of these cytokines. On the other hand, flow cytometric analysis of DC's surface molecules indicated that APC does not significantly affect expression of CD83, a marker of mDC differentiation, and the co‐stimulatory molecules CD40, CD80 and CD86. These results suggest that APC has anti‐inflammatory effects on human DCs and may be effective against some inflammatory diseases in which the pathogenesis involves TNF‐α and/or IL‐6 production.  相似文献   
70.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号