首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2603篇
  免费   139篇
  国内免费   7篇
  2022年   8篇
  2021年   17篇
  2020年   17篇
  2019年   25篇
  2018年   28篇
  2017年   32篇
  2016年   49篇
  2015年   58篇
  2014年   83篇
  2013年   138篇
  2012年   160篇
  2011年   162篇
  2010年   108篇
  2009年   93篇
  2008年   139篇
  2007年   148篇
  2006年   131篇
  2005年   159篇
  2004年   144篇
  2003年   144篇
  2002年   143篇
  2001年   74篇
  2000年   62篇
  1999年   61篇
  1998年   35篇
  1997年   28篇
  1996年   20篇
  1995年   20篇
  1994年   15篇
  1993年   18篇
  1992年   35篇
  1991年   41篇
  1990年   28篇
  1989年   30篇
  1988年   36篇
  1987年   29篇
  1986年   26篇
  1985年   15篇
  1984年   15篇
  1983年   17篇
  1982年   19篇
  1981年   11篇
  1980年   12篇
  1979年   17篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1974年   10篇
  1971年   12篇
  1969年   10篇
排序方式: 共有2749条查询结果,搜索用时 46 毫秒
91.
Unraveling the metabolic and phytohormonal changes in anthers exposed to heat stress would help identify mechanisms regulating heat stress tolerance during the sensitive reproductive stage. Two spring wheat genotypes contrasting for heat tolerance were exposed to heat stress during heading in controlled environment chambers. Anthers were collected from main and primary spikes for metabolic and phytohormonal profiling. A significant reduction in seed set (38%), grain number (54%) and grain weight (52%) per plant was recorded in the sensitive (KSG1177) but not in the tolerant (KSG1214) genotype under heat stress compared to control. Anther metabolite accumulation did not vary quantitatively between main and primary spikes. Hierarchical clustering of the genotypes and treatments using metabolites and phytohormones revealed a distinct cluster for KSG1177 under heat stress from that of control and KSG1214. A significant increase in N-based amino acids, ABA, IAA-conjugate and a decrease in polyamines and organic acids were observed in wheat anthers exposed to heat stress. Unlike KSG1214, a significantly higher accumulation of amino acids, ABA and IAA-conjugate in anthers of the sensitive KSG1177 was recorded under heat stress. These findings provide the rationale and direction towards developing molecular markers for enhancing heat stress tolerance in wheat.  相似文献   
92.
Missense mutations of the RET gene have been identified in both multiple endocrine neoplasia (MEN) type 2A/B and Hirschsprung disease (HSCR: congenital absence of the enteric nervous system, ENS). Current consensus holds that MEN2A/B and HSCR are caused by activating and inactivating RET mutations, respectively. However, the biological significance of RET missense mutations in vivo has not been fully elucidated. In the present study, we introduced one MEN2B-associated (M918T) and two HSCR-associated (N394K and Y791F) RET missense mutations into the corresponding regions of the mouse Ret gene by genome editing (RetM919T, RetN396K and RetY792F) and performed histological examinations of Ret-expressing tissues to understand the pathogenetic impact of each mutant in vivo. RetM919T/+ mice displayed MEN2B-related phenotypes, including C-cell hyperplasia and abnormal enlargement of the primary sympathetic ganglia. Similar sympathetic phenotype was observed in RetM919T/- mice, demonstrating a strong pathogenetic effect of the Ret M918T by a single-allele expression. In contrast, no abnormality was found in the ENS of mice harboring the Ret N394K or Y791F mutation. Most surprisingly, single-allele expression of RET N394K or Y791F was sufficient for normal ENS development, indicating that these RET mutants exert largely physiological function in vivo. This study reveals contrasting pathogenetic effects between MEN2B- and HSCR-associated RET missense mutations, and suggests that some of HSCR-associated RET missense mutations are by themselves neither inactivating nor pathogenetic and require involvement of other gene mutations for disease expressivity.  相似文献   
93.
All TGF-beta family members have a prodomain that is important for secretion. Lack of secretion of a TGF-beta family member GDF5 is known to underlie some skeletal abnormalities, such as brachydactyly type C that is characterized by a huge and unexplained phenotypic variability. To search for potential phenotypic modifiers regulating secretion of GDF5, we compared cells overexpressing wild type (Wt) GDF5 and GDF5 with a novel mutation in the prodomain identified in a large Pakistani family with Brachydactyly type C and mild Grebe type chondrodyslplasia (c527T>C; p.Leu176Pro). Initial in vitro expression studies revealed that the p.Leu176Pro mutant (Mut) GDF5 was not secreted outside the cells. We subsequently showed that GDF5 was capable of forming a complex with latent transforming growth factor binding proteins, LTBP1 and LTBP2. Furthermore, secretion of LTBP1 and LTBP2 was severely impaired in cells expressing the Mut-GDF5 compared to Wt-GDF5. Finally, we demonstrated that secretion of Wt-GDF5 was inhibited by the Mut-GDF5, but only when LTBP (LTBP1 or LTBP2) was co-expressed. Based on these findings, we suggest a novel model, where the dosage of secretory co-factors or stabilizing proteins like LTBP1 and LTBP2 in the microenvironment may affect the extent of GDF5 secretion and thereby function as modifiers in phenotypes caused by GDF5 mutations.  相似文献   
94.
Botulinum neurotoxin (BoNT) binds to nontoxic nonhemagglutinin (NTNHA) protein in a pH-dependent manner, and yields the protease-resistant BoNT/NTNHA complex. Here, we screened short peptides that bind to the serotype D NTNHA (NTNHA-D) using random phage display technique. NTNHA was fixed onto electrode of quartz crystal microbalance (QCM) apparatus, and then the phages displaying random heptapeptides were exposed to the NTNHA-D under the acidic condition. After rinsing with acidic buffer, the released phages under the alkaline condition were collected. The binding and release of the phage were monitored by the frequency shift on the QCM. As a result of the screening, 16 were selected as peptides that bind to NTNHA-D. The selected peptides do not share any conserved sequence, but tend to be rich in basic and/or hydrophobic amino acid. This would explain the binding manner of the BoNT to the NTNHA protein.  相似文献   
95.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   
96.
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033.  相似文献   
97.
Cardiomyocytes proliferate during fetal life but lose their ability to proliferate soon after birth and further increases in cardiac mass are achieved through an increase in cell size or hypertrophy. Mammalian target of rapamycin complex 1 (mTORC1) is critical for cell growth and proliferation. Rheb (Ras homologue enriched in brain) is one of the most important upstream regulators of mTORC1. Here, we attempted to clarify the role of Rheb in the heart using cardiac-specific Rheb-deficient mice (Rheb−/−). Rheb−/− mice died from postnatal day 8 to 10. The heart-to-body weight ratio, an index of cardiomyocyte hypertrophy, in Rheb−/− was lower than that in the control (Rheb+/+) at postnatal day 8. The cell surface area of cardiomyocytes isolated from the mouse hearts increased from postnatal days 5 to 8 in Rheb+/+ mice but not in Rheb−/− mice. Ultrastructural analysis indicated that sarcomere maturation was impaired in Rheb−/− hearts during the neonatal period. Rheb−/− hearts exhibited no difference in the phosphorylation level of S6 or 4E-BP1, downstream of mTORC1 at postnatal day 3 but showed attenuation at postnatal day 5 or 8 compared with the control. Polysome analysis revealed that the mRNA translation activity decreased in Rheb−/− hearts at postnatal day 8. Furthermore, ablation of eukaryotic initiation factor 4E-binding protein 1 in Rheb−/− mice improved mRNA translation, cardiac hypertrophic growth, sarcomere maturation, and survival. Thus, Rheb-dependent mTORC1 activation becomes essential for cardiomyocyte hypertrophic growth after early postnatal period.  相似文献   
98.
Adipose tissue‐derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β‐cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow‐derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs.  相似文献   
99.
The febrile response is elicited by pyrogenic cytokines including IL-6 in response to microorganism infections and diseases in vertebrates. Mammalian HSF1, which senses elevations in temperature, negatively regulates the response by suppressing pyrogenic cytokine expression. We here showed that HSF3, an avian ortholog of mammalian HSF1, directly binds to and activates IL-6 during heat shock in chicken cells. Other components of the febrile response mechanism, such as IL-1β and ATF3, were also differently regulated in mammalian and chicken cells. These results suggest that the febrile response is exacerbated by a feed-forward circuit composed of the HSF3-IL-6 pathway in birds.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号