首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   31篇
  315篇
  2022年   8篇
  2021年   9篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   14篇
  2014年   19篇
  2013年   15篇
  2012年   23篇
  2011年   34篇
  2010年   14篇
  2009年   13篇
  2008年   21篇
  2007年   22篇
  2006年   17篇
  2005年   13篇
  2004年   16篇
  2003年   11篇
  2002年   6篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1970年   1篇
  1966年   1篇
  1963年   1篇
  1960年   1篇
  1950年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
161.
Our lab has isolated hexameric peptides that are structure-selective ligands of Holliday junctions (HJ), central intermediates of several DNA recombination reactions. One of the most potent of these inhibitors, WRWYCR, has shown antibacterial activity in part due to its inhibition of DNA repair proteins. To increase the therapeutic potential of these inhibitors, we searched for small molecule inhibitors with similar activities. We screened 11 small molecule libraries comprising over nine million individual compounds and identified a potent N-methyl aminocyclic thiourea inhibitor that also traps HJs formed during site-specific recombination reactions in vitro. This inhibitor binds specifically to protein-free HJs and can inhibit HJ resolution by RecG helicase, but only showed modest growth inhibition of bacterial with a hyperpermeable outer membrane; nonetheless, this is an important step in developing a functional analog of the peptide inhibitors.  相似文献   
162.
Eukaryotic initiation factor 4G (eIF4G) promotes mRNA recruitment to the ribosome by binding to the mRNA cap- and poly(A) tail-binding proteins eIF4E and Pap1p. eIF4G also binds eIF4A at a distinct HEAT domain composed of five stacks of antiparallel alpha-helices. The role of eIF4G in the later steps of initiation, such as scanning and AUG recognition, has not been defined. Here we show that the entire HEAT domain and flanking residues of Saccharomyces cerevisiae eIF4G2 are required for the optimal interaction with the AUG recognition factors eIF5 and eIF1. eIF1 binds simultaneously to eIF4G and eIF3c in vitro, as shown previously for the C-terminal domain of eIF5. In vivo, co-overexpression of eIF1 or eIF5 reverses the genetic suppression of an eIF4G HEAT domain Ts(-) mutation by eIF4A overexpression. In addition, excess eIF1 inhibits growth of a second eIF4G mutant defective in eIF4E binding, which was also reversed by co-overexpression of eIF4A. Interestingly, excess eIF1 carrying the sui1-1 mutation, known to relax the accuracy of start site selection, did not inhibit the growth of the eIF4G mutant, and sui1-1 reduced the interaction between eIF4G and eIF1 in vitro. Moreover, a HEAT domain mutation altering eIF4G moderately enhances translation from a non-AUG codon. These results strongly suggest that the binding of the eIF4G HEAT domain to eIF1 and eIF5 is important for maintaining the integrity of the scanning ribosomal preinitiation complex.  相似文献   
163.

Rationale

The rationale was to utilize a bioinformatics approach to identify miRNA binding sites in genes with single nucleotide mutations (SNPs) to discover pathways in heart failure (HF).

Objective

The objective was to focus on the genes containing miRNA binding sites with miRNAs that were significantly altered in end-stage HF and in response to a left ventricular assist device (LVAD).

Methods and Results

BEDTools v2.14.3 was used to discriminate SNPs within predicted 3′UTR miRNA binding sites. A member of the miR-15/107 family, miR-16, was decreased in the circulation of end-stage HF patients and increased in response to a LVAD (p<0.001). MiR-16 decreased Vacuolar Protein Sorting 4a (VPS4a) expression in HEK 293T cells (p<0.01). The SNP rs16958754 was identified in the miR-15/107 family binding site of VPS4a which abolished direct binding of miR-16 to the 3′UTR of VPS4a (p<0.05). VPS4a was increased in the circulation of end-stage HF patients (p<0.001), and led to a decrease in the number of HEK 293T cells in vitro (p<0.001).

Conclusions

We provide evidence that miR-16 decreases in the circulation of end-stage HF patients and increases with a LVAD. Modeling studies suggest that miR-16 binds to and decreases expression of VPS4a. Overexpression of VPS4a decreases cell number. Together, these experiments suggest that miR-16 and VPS4a expression are altered in end-stage HF and in response to unloading with a LVAD. This signaling pathway may lead to reduced circulating cell number in HF.  相似文献   
164.
Plant proteinase inhibitors (PIs) are plant defense proteins and considered as potential candidates for engineering plant resistances against herbivores. Capsicum annuum proteinase inhibitor (CanPI7) is a multi-domain potato type II inhibitor (Pin-II) containing four inhibitory repeat domains (IRD), which target major classes of digestive enzymes in the gut of Helicoverpa armigera larvae. Stable integration and expression of the transgene in T1 transgenic generation, were confirmed by established molecular techniques. Protein extract of transgenic tomato lines showed increased inhibitory activity against H. armigera gut proteinases, supporting those domains of CanPI7 protein to be effective and active. When T1 generation plants were analyzed, they exhibited antibiosis effect against first instar larvae of H. armigera. Further, larvae fed on transgenic tomato leaves showed delayed growth relative to larvae fed on control plants, but did not change mortality rates significantly. Thus, better crop protection can be achieved in transgenic tomato by overexpression of multi-domain proteinase inhibitor CanPI7 gene against H. armigera larvae.  相似文献   
165.
We compare the geometric and physical-chemical properties of interfaces involved in specific and non-specific protein-protein interactions in crystal structures reported in the Protein Data Bank. Specific interactions are illustrated by 70 protein-protein complexes and by subunit contacts in 122 homodimeric proteins; non-specific interactions are illustrated by 188 pairs of monomeric proteins making crystal-packing contacts selected to bury more than 800 A2 of protein surface. A majority of these pairs have 2-fold symmetry and form "crystal dimers" that cannot be distinguished from real dimers on the basis of the interface size or symmetry. The chemical and amino acid compositions of the large crystal-packing interfaces resemble the protein solvent-accessible surface. These interfaces are less hydrophobic than in homodimers and contain much fewer fully buried atoms. We develop a residue propensity score and a hydrophobic interaction score to assess preferences seen in the chemical and amino acid compositions of the different types of interfaces, and we derive indexes to evaluate the atomic packing, which we find to be less compact at non-specific than at specific interfaces. We test the capacity of these parameters to identify homodimeric proteins in crystal structures, and show that a simple combination of the non-polar interface area and the fraction of buried interface atoms assigns the quaternary structure of 88% of the homodimers and 77% of the monomers in our data set correctly. These success rates increase to 93-95% when the residue propensity score of the interfaces is taken into consideration.  相似文献   
166.
Human tumors frequently have defects in the maintenance of genomic integrity, which involve a loss of the appropriate response to DNA damage. These pathways of genome integrity include key proteins involved in cell cycle checkpoints, histone modifications, and DNA repair. In this review, we discuss opportunities for therapeutic intervention by exploiting these defects, with an emphasis on those processes which are primarily associated with the repair of double-strand breaks. As these defects are specific to tumor cells, the development of new anti-cancer agents targeting these pathways may have an enhanced therapeutic window, with limited normal tissue toxicity.  相似文献   
167.
The subunit interfaces of 122 homodimers of known three-dimensional structure are analyzed and dissected into sets of surface patches by clustering atoms at the interface; 70 interfaces are single-patch, the others have up to six patches, often contributed by different structural domains. The average interface buries 1,940 A2 of the surface of each monomer, contains one or two patches burying 600-1,600 A2, is 65% nonpolar and includes 18 hydrogen bonds. However, the range of size and of hydrophobicity is wide among the 122 interfaces. Each interface has a core made of residues with atoms buried in the dimer, surrounded by a rim of residues with atoms that remain accessible to solvent. The core, which constitutes 77% of the interface on average, has an amino acid composition that resembles the protein interior except for the presence of arginine residues, whereas the rim is more like the protein surface. These properties of the interfaces in homodimers, which are permanent assemblies, are compared to those of protein-protein complexes where the components associate after they have independently folded. On average, subunit interfaces in homodimers are twice larger than in complexes, and much less polar due to the large fraction belonging to the core, although the amino acid compositions of the cores are similar in the two types of interfaces.  相似文献   
168.
We present an updated version of the protein–RNA docking benchmark, which we first published four years back. The non‐redundant protein–RNA docking benchmark version 2.0 consists of 126 test cases, a threefold increase in number compared to its previous version. The present version consists of 21 unbound–unbound cases, of which, in 12 cases, the unbound RNAs are taken from another complex. It also consists of 95 unbound–bound cases where only the protein is available in the unbound state. Besides, we introduce 10 new bound–unbound cases where only the RNA is found in the unbound state. Based on the degree of conformational change of the interface residues upon complex formation the benchmark is classified into 72 rigid‐body cases, 25 semiflexible cases and 19 full flexible cases. It also covers a wide range of conformational flexibility including small side chain movement to large domain swapping in protein structures as well as flipping and restacking in RNA bases. This benchmark should provide the docking community with more test cases for evaluating rigid‐body as well as flexible docking algorithms. Besides, it will also facilitate the development of new algorithms that require large number of training set. The protein–RNA docking benchmark version 2.0 can be freely downloaded from http://www.csb.iitkgp.ernet.in/applications/PRDBv2 . Proteins 2017; 85:256–267. © 2016 Wiley Periodicals, Inc.  相似文献   
169.
Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-3H]-pregnenolone through each steroid intermediate to [7-3H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra-adrenal cortisol synthesis, which could be a fundamental pathway in skin biology with implications in psoriasis and atopic dermatitis.  相似文献   
170.
A novel series of 5-aryl thiazolidine-2,4-diones based dual PPARalpha/gamma agonists was identified. A number of highly potent and orally bioavailable analogues were synthesized. Efficacy study results of some of these analogues in the db/db mice model of type 2 diabetes showed them superior to rosiglitazone in correcting hyperglycemia and hypertriglyceridemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号