首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   31篇
  2022年   8篇
  2021年   9篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   5篇
  2016年   11篇
  2015年   14篇
  2014年   19篇
  2013年   15篇
  2012年   23篇
  2011年   34篇
  2010年   14篇
  2009年   13篇
  2008年   21篇
  2007年   22篇
  2006年   17篇
  2005年   13篇
  2004年   16篇
  2003年   11篇
  2002年   6篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1970年   1篇
  1966年   1篇
  1963年   1篇
  1960年   1篇
  1950年   1篇
排序方式: 共有315条查询结果,搜索用时 31 毫秒
111.
ABSTRACT: BACKGROUND: Protein-DNA interactions are important for many cellular processes, however structural knowledge for a large fraction of known and putative complexes is still lacking. Computational docking methods aim at the prediction of complex architecture given detailed structures of its constituents. They are becoming an increasingly important tool in the field of macromolecular assemblies, complementing particularly demanding protein-nucleic acids X ray crystallography and providing means for the refinement and integration of low resolution data coming from rapidly advancing methods such as cryoelectron microscopy. RESULTS: We present a new coarse-grained force field suitable for protein-DNA docking. The force field is an extension of previously developed parameter sets for protein-RNA and protein-protein interactions. The docking is based on potential energy minimization in translational and orientational degrees of freedom of the binding partners. It allows for fast and efficient systematic search for native-like complex geometry without any prior knowledge regarding binding site location. CONCLUSIONS: We find that the force field gives very good results for bound docking. The quality of predictions in the case of unbound docking varies, depending on the level of structural deviation from bound geometries. We analyze the role of specific protein-DNA interactions on force field performance, both with respect to complex structure prediction, and the reproduction of experimental binding affinities. We find that such direct, specific interactions only partially contribute to protein-DNA recognition, indicating an important role of shape complementarity and sequence-dependent DNA internal energy, in line with the concept of indirect protein-DNA readout mechanism.  相似文献   
112.
In the present study, a novel cell penetrating peptide (CPP) named as Rath, has been identified from the avian infectious bursal disease virus. It has the potential to penetrate and translocate cargo molecules into cells independent of temperature. Additionally, it can deliver oligonucleotide in 30 min and antibodies within an hour intracellular to chicken embryonic fibroblast primary cells. As an ideal delivery vehicle, it has the ability to protect the cargo molecules in the presence of serum, nucleases and has minimal or no cytotoxicity at even higher peptide concentrations studied. The biophysical characterizations showed that Rath has a dominant β structure with a small α helix and has remarkable binding ability with protein and DNA. Thus, the characterization of unique Rath peptide to deliver protein or nucleic acid into the cells with non-covalent interaction could be used as an effective delivery method for various cell based assays.  相似文献   
113.
Protein-protein interaction and quaternary structure   总被引:3,自引:0,他引:3  
Protein-protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein-protein complexes, oligomeric proteins, viral capsids and protein-nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.  相似文献   
114.
Eukaryotic initiation factor (eIF) 1 is a small protein (12 kDa) governing fidelity in translation initiation. It is recruited to the 40 S subunit in a multifactor complex with Met-tRNA(i)(Met), eIF2, eIF3, and eIF5 and binds near the P-site. eIF1 release in response to start codon recognition is an important signal to produce an 80 S initiation complex. Although the ribosome-binding face of eIF1 was identified, interfaces to other preinitiation complex components and their relevance to eIF1 function have not been determined. Exploiting the solution structure of yeast eIF1, here we locate the binding site for eIF5 in its N-terminal tail and at a basic/hydrophobic surface area termed KH, distinct from the ribosome-binding face. Genetic and biochemical studies indicate that the eIF1 N-terminal tail plays a stimulatory role in cooperative multifactor assembly. A mutation altering the basic part of eIF1-KH is lethal and shows a dominant phenotype indicating relaxed start codon selection. Cheung et al. recently demonstrated that the alteration of hydrophobic residues of eIF1 disrupts a critical link to the preinitiation complex that suppresses eIF1 release before start codon selection (Cheung, Y.-N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. (2007) Genes Dev. 21, 1217-1230 ). Interestingly, eIF1-KH includes the altered hydrophobic residues. Thus, eIF5 is an excellent candidate for the direct partner of eIF1-KH that mediates the critical link. The direct interaction at eIF1-KH also places eIF5 near the decoding site of the 40 S subunit.  相似文献   
115.
Hypoxia induces a diverse spectrum of changes in the expression and activity of numerous DNA repair factors within the tumor microenvironment. In particular, we and others have shown that hypoxia induces phosphorylation and activation of the checkpoint kinase, CHK2, in an ATM-dependent manner. One downstream target of CHK2, the BRCA1 protein, plays a critical role in both DNA repair and cell cycle checkpoint regulation in mammalian cells. Here we report that BRCA1 is specifically phosphorylated on Serine 988 in response to hypoxic stress, and phosphorylation at this site is dependent on CHK2 expression. These findings enhance our understanding of ATM-CHK2 pathway activation in hypoxia, and they identify a novel role for BRCA1 in the response to hypoxic stress.  相似文献   
116.
Plested AJ  Vijayan R  Biggin PC  Mayer ML 《Neuron》2008,58(5):720-735
Membrane proteins function in a polarized ionic environment with sodium-rich extracellular and potassium-rich intracellular solutions. Glutamate receptors that mediate excitatory synaptic transmission in the brain show unusual sensitivity to external ions, resulting in an apparent requirement for sodium in order for glutamate to activate kainate receptors. Here, we solve the structure of the Na(+)-binding sites and determine the mechanism by which allosteric anions and cations regulate ligand-binding dimer stability, and hence the rate of desensitization and receptor availability for gating by glutamate. We establish a stoichiometry for binding of 2 Na(+) to 1 Cl(-) and show that allosteric anions and cations bind at physically discrete sites with strong electric fields, that the binding sites are not saturated in CSF, and that the requirement of kainate receptors for Na(+) occurs simply because other cations bind with lower affinity and have lower efficacy compared to Na(+).  相似文献   
117.
118.
Barik A  C N  P M  Bahadur RP 《Proteins》2012,80(7):1866-1871
We have developed a nonredundant protein-RNA docking benchmark dataset, which is derived from the available bound and unbound structures in the Protein Data Bank involving polypeptide and nucleic acid chains. It consists of nine unbound-unbound cases where both the protein and the RNA are available in the free form. The other 36 cases are of unbound-bound type where only the protein is available in the free form. The conformational change upon complex formation is calculated by a distance matrix alignment method, and based on that, complexes are classified into rigid, semi-flexible, and full flexible. Although in the rigid body category, no significant conformational change accompanies complex formation, the fully flexible test cases show large domain movements, RNA base flips, etc. The benchmark covers four major groups of RNA, namely, t-RNA, ribosomal RNA, duplex RNA, and single-stranded RNA. We find that RNA is generally more flexible than the protein in the complexes, and the interface region is as flexible as the molecule as a whole. The structural diversity of the complexes in the benchmark set should provide a common ground for the development and comparison of the protein-RNA docking methods. The benchmark can be freely downloaded from the internet.  相似文献   
119.
Adrenocortical influence on uropygial gland of 10-day old male white leghorn chicken was assessed by suppressing glucocorticoid level with metyrapone and following corticosterone and deoxycorticosterone acetate (DOC) treatments (im), 100 micrograms each on alternate day for a period of 15 days. Metyrapone treatment resulted in significant atrophy of the uropygial gland with a severe regression of the glandular alveoli due to cytopycnosis, cellular disintegration and drastic cell loss. Concomitantly, there was a depletion of glandular lipid and its diester wax fraction. Corticosterone, administered simultaneously with metyrapone, counteracted severe adverse effects of the latter on the uropygial gland. In the normal chicken also corticosterone alone caused glandular hypertrophy with increased rate of cell renewal and cell growth within the alveoli and, to a lesser extent, augmented output of the glandular lipids. Simultaneous administration of corticosterone and testosterone propionate (TP), on the other hand, caused a moderate suppressive influence on this gland. DOC treatment alone or with metyrapone and TP failed to exert any noteworthy change in the uropygial gland excepting a moderate reduction of gland weight and a rise of glandular lipids observed after combined injections of DOC with TP and with metyrapone respectively.  相似文献   
120.
The configuration at the C-3 quaternary carbon atoms in two pairs (1 and 2, 3 and 4) of 3-C-hydroxymethyl, branched-chain, 1,2:4,6-diacetalated aldohexo-pyranoses have been determined from their 13 C-n.m.r. spectra. The stereochemical assignments were achieved by comparison of the spectra with those of the Z (13) and E isomers (14) of 4-tert-butyl-l-hydroxymethylcyclohexanol and with those of the corresponding diacetalated gluco- and allo-pyranoses (5, 6, 9, and 10). The spectra of 13 and 14 showed that an axial hydroxyl group shielded the α, β, and μ ring carbon atoms more than an axial hydroxymethyl group and that the carbon atom in the latter group was shielded relative to that in an equatorial hydroxymethyl group The spectra of 5, 6, 9, and 10 indicated the effect of an axial HO-3 on the shifts of the carbon atoms in the 1,2-O-alkylidene groups. The stereochemistry of an isomeric pair of 1,2:4,6-di-O-alkylidene-3-C-methyl-aldohexopyranoses (11 and 12) has also been determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号