首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   9篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有91条查询结果,搜索用时 140 毫秒
41.
42.
The trypanosomatid protozoan Trypanosoma cruzi contains long autonomous (L1Tc) and short nonautonomous (NARTc) non-long terminal repeat retrotransposons. NARTc (0.25 kb) probably derived from L1Tc (4.9 kb) by 3'-deletion. It has been proposed that their apparent random distribution in the genome is related to the L1Tc-encoded apurinic/apyrimidinic endonuclease (APE) activity, which repairs modified residues. To address this question we used the T. cruzi (CL-Brener strain) genome data to analyze the distribution of all the L1Tc/NARTc elements present in contigs larger than 10 kb. This data set, which represents 0.91x sequence coverage of the haploid nuclear genome ( approximately 55 Mb), contains 419 elements, including 112 full-length L1Tc elements (14 of which are potentially functional) and 84 full-length NARTc. Approximately half of the full-length elements are flanked by a target site duplication, most of them (87%) are 12 bp long. Statistical analyses of sequences flanking the full-length elements show the same highly conserved pattern upstream of both the L1Tc and NARTc retrotransposons. The two most conserved residues are a guanine and an adenine, which flank the site where first-strand cleavage is performed by the element-encoded endonuclease activity. This analysis clearly indicates that the L1Tc and NARTc elements display relative site specificity for insertion, which suggests that the APE activity is not responsible for first-strand cleavage of the target site.  相似文献   
43.
44.
Dehydrins (DHNs) correspond to late embryogenesis abundant proteins (LEA) of group 2, they are known as glycin rich proteins. Despite their expression during the late seed maturation stages, they are also involved in plant response to a number of abiotic stresses such as drought, salinity and cold. In the present study, we identified five full-length cDNAs encoding dehydrins (designated StDHN2a, StDHN1, TAS14, StDHN25 and StLEA27) isolated from potato. These dehydrins were composed of serine amino acids called S domain and lysine-rich segment corresponding to a K domain. Three DHNs (StDHN1, TAS14 and StLEA27) contained Y segments. In silico analysis showed that these StDHN sequences share high homology with other Solanum dehydrin proteins species. The analysis of gene expression using quantitative RT-PCR showed that they were upregulated by dehydration and salinity. Moreover, the search for putative regulatory element in the promoter sequence of dehydrin genes was investigated.  相似文献   
45.
The experimental work of studying the adsorption of ketotifen and allopurinol by chitosan focused on determining the solubilities and the adsorption isotherms of the adsorbates employed in this study. The adsorption of the aforementioned compounds by chitosan was studied using the rotating bottle method. The concentrations, both before and after the attainment of equilibrium, were determined with the aid of a reversed-phase high-performance liquid chromatography column. The results of these studies demonstrated that ketotifen and allopurinol are both adsorbed by chitosan. The nonlinear Langmuir-like and the Freundlich models both were applied to the experimental data. The correlation coefficients obtained from the nonlinear Langmuir-like model were better than those obtained from Freundlich model, suggesting that allopurinol and ketotifen interacted with certain specific binding sites on the chitosan surface. The allopurinol adsorption experiments indicated that the particle size of chitosan and therefore the surface area can significantly affect the Langmuir capacity constant, while the affinity constants are statistically the same. As expected from the solubility studies, the ketotifen adsorption experiments at 2 different pHs (7 and 10) showed that the adsorption affinity at pH 10 was much higher than at pH 7. What was not expected was that the capacity constants were significantly different, suggesting that further studies are needed using common ion buffers and multicomponent adsorption for the proper mechanism to be determined.  相似文献   
46.
Advances in schistosome genomics   总被引:5,自引:0,他引:5  
  相似文献   
47.
We describe a novel gene family that forms clusters in subtelomeric regions of Trypanosoma brucei chromosomes and partially accounts for the observed clustering of retrotransposons. The ingi and ribosomal inserted mobile element (RIME) non-LTR retrotransposons share 250 bp at both extremities and are the most abundant putatively mobile elements, with about 500 copies per haploid genome. From cDNA clones and subsequently in the T. brucei genomic DNA databases, we identified 52 homologous gene and pseudogene sequences, 16 of which contain a RIME and/or ingi retrotransposon inserted at exactly the same relative position. Here these genes are called the RHS family, for retrotransposon hot spot. Comparison of the protein sequences encoded by RHS genes (21 copies) and pseudogenes (24 copies) revealed a conserved central region containing an ATP/GTP-binding motif and the RIME/ingi insertion site. The RHS proteins share between 13 and 96% identity, and six subfamilies, RHS1 to RHS6, can be defined on the basis of their divergent C-terminal domains. Immunofluorescence and Western blot analyses using RHS subfamily-specific immune sera show that RHS proteins are constitutively expressed and occur mainly in the nucleus. Analysis of Genome Survey Sequence databases indicated that the Trypanosoma brucei diploid genome contains about 280 RHS (pseudo)-genes. Among the 52 identified RHS (pseudo)genes, 48 copies are in three RHS clusters located in subtelomeric regions of chromosomes Ia and II and adjacent to the active bloodstream form expression site in T. brucei strain TREU927/4 GUTat10.1. RHS genes comprise the remaining sequence of the size-polymorphic “repetitive region” described for T. brucei chromosome I, and a homologous gene family is present in the Trypanosoma cruzi genome.  相似文献   
48.
49.
It has been previously shown that 5-HT uptake inhibition produced by tetanus toxin (TeTx) corresponds to a non-competitive inhibition, and it is preceded by phosphorylation of the tyrosine-kinase receptor trkA, phospholipase C activation and translocation of protein kinase C isoforms [FEBS Lett. 481 (2000) 177; FEBS Lett. 486 (2000) 136]. In the present work, it is shown that agonists of tyrosine-kinase receptors (NGF, EGF, basic FGF) enhance Na+-dependent, 5-hydroxytryptamine (serotonin, 5-HT) uptake in the synaptosomal-enriched P2 fraction from rat-brain, suggesting a divergence in the intracellular signal pathways triggered by TeTx and by agonists of TyrK receptors. Co-applications of TeTx and agonists of TyrK receptors result in a mutual and partial reversion of their effects on 5-HT transport. In spite of their differences on transport, TeTx, TPA and NGF produce an increase in serotonin transporter phosphorylation in Ser separately, which is abolished by the PKC-inhibitor bisindolylmaleimide-1. Co-application of sodium vanadate, a tyrosine-phosphatase inhibitor, partially abolishes the effect produced by TeTx, whereas genistein, a tyrosine-kinase inhibitor, does not exert any variation of TeTx inhibition. Analyses by immunoblotting of the activation of specific PKC isoforms activation, determined as translocation to the membrane compartment, reveals differences in the pattern produced by NGF and TeTx. PKCγ, δ, and isoforms are equally activated by both compounds, whereas the β isoform is activated in a sustained manner only by TeTx, and the isoform is only down-regulated by NGF. The aim of the present work was to explore whether NGF have the same effect on 5-HT transport than TeTx, since both compounds share the ability of activate part of the same transduction pathways. In spite of this, growth factors and TeTx show an opposite effect on 5-HT transport, even though SERT phosphorylation is enhanced in both cases. The differential effect on - and β-PKC isoenzymes found between NGF and TeTx action could explain this apparent discrepancy.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号