首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   34篇
  国内免费   1篇
  2023年   4篇
  2022年   12篇
  2021年   20篇
  2020年   9篇
  2019年   9篇
  2018年   14篇
  2017年   19篇
  2016年   28篇
  2015年   28篇
  2014年   30篇
  2013年   49篇
  2012年   51篇
  2011年   30篇
  2010年   24篇
  2009年   21篇
  2008年   31篇
  2007年   35篇
  2006年   21篇
  2005年   20篇
  2004年   21篇
  2003年   13篇
  2002年   8篇
  2001年   10篇
  2000年   6篇
  1999年   9篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   6篇
  1992年   15篇
  1991年   15篇
  1990年   9篇
  1989年   16篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1960年   1篇
  1959年   3篇
排序方式: 共有640条查询结果,搜索用时 31 毫秒
131.
132.
A cytotoxin-like basic protein has been isolated from the venom of the nominate race of cobra (Naja naja naja from Pakistan) by a single step of high-performance liquid chromatography. The primary structure was determined and consists of 62 amino acid residues in a single polypeptide chain. It is highly similar to that of the cytotoxin-like basic proteins isolated from other Naja species, but differs in two of the SS-loop structures from that of cytotoxins.  相似文献   
133.
The primary structure of camel alpha-lactalbumin was determined by analysis of the intact protein, and of CNBr fragments and enzymatic peptides from the carboxymethylated protein chain. Results show that camel alpha-lactalbumin has 123 residues and a molecular mass of 14.6 kDa. The amino acid sequence is strictly homologous to alpha-lactalbumins characterized, but also exhibits extensive differences: 39 residues differ in relation to the bovine protein and only 35 residues are conserved among hitherto known alpha-lactalbumins with characterized structures. All residues ascribed critical structural or functional roles are strictly invariant in the camel protein.  相似文献   
134.
Male rats were injected with 50 mg ethylene-1,2-dimethanesulphonate/kg from Day 5 to Day 16 after birth and control rats received injections of the same volume of vehicle. Testes were studied at various times from Day 6 to Day 108 using histochemistry, light and electron microscopy. Fine structural degenerative changes were observed in the Leydig cells and seminiferous tubules of EDS-treated animals as early as Day 6. By Day 11 no Leydig cells could be detected and the interstitia of EDS-treated testes contained large numbers of fibroblast-like cells which formed peritubular collars 3-5 cells thick; the tubules contained Sertoli cells with heterogeneous inclusions and large numbers of lipid droplets. A small number of Leydig cells was found at Day 14 and their numbers increased so that, in animals of 28 days and older, large clusters of Leydig cells were present between severely atrophic tubules. These tubules contained Sertoli cells with few organelles; germinal cells were not observed after 28 days in EDS-treated animals. These results show that EDS destroys the fetal population of Leydig cells postnatally and this mimics the well documented effect of EDS on adult Leydig cells. The seminiferous tubules were permanently damaged by EDS in the present experiments. Tubular damage could have been due to a direct cytotoxic effect of multiple injections of EDS on the tubule before the blood-testis barrier develops or due to withdrawal of androgen support secondary to Leydig cell destruction.  相似文献   
135.
136.
137.
Fatty acid esterification using nylon-immobilized lipase   总被引:2,自引:0,他引:2  
The esterification of a long-chain fatty acid was conducted using a nylon-immobilized lipase from Candida cylindracea in a nearly anhydrous, nonpolar organic medium, hexane. Butyl laurate was produced from lauric acid and n-butanol at a maximum initial reaction rate of 37 mmol/h. g immobilized enzyme when the substrates were present in equimolar amounts at an initial concentration of 0.5 mol/L. Lower rates were obtained using nonstoichiometric amounts of the substrates. The rate of reaction increased with temperature, reaching a maximum between 35 and 45 degrees C and decreasing sharply at higher temperatures. (c) 1995 John Wiley & Sons, Inc.  相似文献   
138.
This review summarizes recent work on two basic processes of central nervous system (CNS) control of cholinergic outflow to the airways: 1) transmission of bronchoconstrictive signals from the airways to the airway-related vagal preganglionic neurons (AVPNs) and 2) regulation of AVPN responses to excitatory inputs by central GABAergic inhibitory pathways. In addition, the autocrine-paracrine modulation of AVPNs is briefly discussed. CNS influences on the tracheobronchopulmonary system are transmitted via AVPNs, whose discharge depends on the balance between excitatory and inhibitory impulses that they receive. Alterations in this equilibrium may lead to dramatic functional changes. Recent findings indicate that excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second-order neurons within the nucleus of the solitary tract (NTS), via a glutamate-AMPA signaling pathway. These neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command to airway effector organs: smooth muscle, submucosal secretory glands, and the vasculature, through intramural ganglionic neurons. The strength and duration of reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs and autocrine-paracrine controlling mechanisms. Downregulation of GABAergic inhibitory influences may result in a shift from inhibitory to excitatory drive that may lead to increased excitability of AVPNs, heightened airway responsiveness, and sustained narrowing of the airways. Hence a better understanding of these normal and altered central neural circuits and mechanisms could potentially improve the design of therapeutic interventions and the treatment of airway obstructive diseases.  相似文献   
139.
Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号