首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   17篇
  307篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   10篇
  2019年   20篇
  2018年   7篇
  2017年   16篇
  2016年   8篇
  2015年   12篇
  2014年   17篇
  2013年   18篇
  2012年   20篇
  2011年   28篇
  2010年   12篇
  2009年   8篇
  2008年   11篇
  2007年   12篇
  2006年   15篇
  2005年   11篇
  2004年   8篇
  2003年   13篇
  2002年   10篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1988年   2篇
  1984年   2篇
  1981年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
111.
Cotton bollworm, Helicoverpa armigera (Hübner) is a cosmopolite insect pest of a wide spectrum of crops such as cotton, maize, tomato, soybean, etc. Egg parasitoids mainly Trichogramma brassicae Bezdenko and Bacillus thuringiensis Berliner (Bt) are biological control agents, that are used as components of sustainable and environmentally compatible IPM systems. Although Bt does not come in direct contact with egg parasitoids, it may persist within the host’s body and affect the quality of the host’s eggs via biochemical changes in their mother and possibly behaviour and potency of the parasitoids. In this study, the functional response of T. brassicae to different densities of H. armigera eggs was investigated in two sets of experiments at 26?±?1?°C, 65?±?5% RH, and 16: 8?h photoperiod. The first group was a control and the second one were eggs laid by hosts treated as 3rd instar larvae with LC20 of Bt (determined as 9.8?×?105?IU/l of artificial diet based on a preliminary bioassay). A type III functional response was observed in both treatments with a direct density dependent mortality up to eight host eggs and an inverse one upward. Both handling time and searching efficiency were affected by Bt treatment as the handling time was increased by a factor of 1.5 and the searching efficiency was decreased by a factor of 0.6. The searching efficiencies were 0.0310?±?0.003 and 0.0182?±?0.005?h?1, and handling times were 1.134?±?0.042 and 1.672?±?0.082?h in control and Bt treatment respectively.  相似文献   
112.
113.
114.
115.
Visceral leishmaniasis (VL) or kala-azar is known to be associated with a mixed Th1-Th2 response, and effective host defense requires the induction of IFN-gamma and IL-12. We address the role of the differential decline of IL-10 and TGF-beta in response to sodium antimony gluconate (SAG) and amphotericin B (AmB), the therapeutic success of SAG and AmB in Indian VL, and the significance of IL-10 and TGF-beta in the development and progression of post-kazla-azar dermal leishmaniasis (PKDL). In the active disease, PBMC from VL patients showed suppressed Ag-specific lymphoproliferation, IFN-gamma and IL-12 production, and elevation of IL-10 and TGF-beta. Cure corresponded with an elevation in IFN-gamma and IL-12 production and down-regulation of IL-10 and TGF-beta. Both CD4(+) and CD8(+) T cells were involved in IFN-gamma and IL-10 production. Interestingly, the retention and maintenance of residual IL-10 and TGF-beta in some SAG-treated individuals and the elevation of IL-10 and TGF-beta in PKDL, a sequel to kala-azar, probably reflects the role of these cytokines in reactivation of the disease in the form of PKDL. Contrastingly, AmB treatment of VL resulted in negligible TGF-beta levels and absolute elimination of IL-10, reflecting the better therapeutic activity of AmB and its probable role in the recent decline in PKDL occurrences in India. Moreover, elucidation of immune responses in Indian PKDL patients revealed a spectral pattern of disease progression where disease severity could be correlated inversely with lymphoproliferation and directly with TGF-beta, IL-10, and Ab production. In addition, the enhancement of CD4(+)CD25(+) T cells in active VL, their decline at cure, and reactivation in PKDL suggest their probable immunosuppressive role in these disease forms.  相似文献   
116.
Toxoplasma gondii is a ubiquitous parasite that infects nearly all warm-blooded animals. Developmental switching in T. gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for the disease propagation after alteration of the immune status of the carrier. The redifferentiation event is characterized by an over expression of a tachyzoite specific set of glycosylphosphatidylinositol anchored surface antigens and free GPIs. T. gondii grown in animal cells uses two glycosylphosphatidylinositol precursors to anchor the parasite surface proteins. The first form has an N-acetylgalactosamine residue bound to a conserved three-mannosyl core glycan, while the second structure contains an additional terminal glucose linked to the N-acetylgalactosamine side branch. Sera from persons infected with T. gondii reacted only with the glucose-N-acetylgalactosamine-containing structure. Here we report that T. gondii cultured in human cells uses predominantly the N-acetylgalactosamine-containing structure to anchor the parasite surface antigens. On the other hand, glycosylphosphatidylinositol structures having an additional terminal glucose are found exclusively on the parasite cell surface as free glycolipids participating in the production of cytokines that are implicated in the pathogenesis of T. gondii. We also provide evidence that such free glycosylphosphatidylinositols are restricted mainly to the lipid microdomains in the parasite cell surface membrane and mostly associated with proteins involved in the parasite motility as well as invasion of the host cell.  相似文献   
117.
Glycosyl-phosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa such as Trypanosoma brucei, Leishmania major, Plasmodium falciparum and Toxoplasma gondii, and represent the major carbohydrate modification of many cell-surface parasite proteins. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. Therefore, the characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. In vitro and in vivo studies using sugars and substrate analogues as well as natural compounds have shown that it is possible to interfere with GPI biosynthesis at different steps in a species-specific manner. Here we review the recent and promising progress in the field of GPI inhibition.  相似文献   
118.
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event. Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.  相似文献   
119.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   
120.
A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 104 M?1) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号