首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   13篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   21篇
  2012年   9篇
  2011年   15篇
  2010年   8篇
  2009年   7篇
  2008年   13篇
  2007年   15篇
  2006年   8篇
  2005年   13篇
  2004年   7篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1966年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
101.
We proposed that a group of genes whose expression is enhanced by polyamines at the level of translation in Escherichia coli and mammalian cells be referred to as a “polyamine modulon”. In Saccharomyces cerevisiae, proteins whose synthesis is enhanced by polyamines at the level of translation were searched for using a polyamine-requiring mutant of S. cerevisiae deficient in ornithine decarboxylase (YPH499 Δspe1). Addition of spermidine to the medium recovered the spermidine content and enhanced cell growth of the YPH499 Δspe1 mutant by 3–5-fold. Under these conditions, synthesis of COX4, one of the subunits of cytochrome C oxidase (complex IV), was enhanced by polyamines about 2.5-fold at the level of translation. Accordingly, the COX4 gene is the first member of a polyamine modulon in yeast. Polyamines enhanced COX4 synthesis through stimulation of the ribosome shunting of the stem–loop structures (hairpin structures) during the scanning of the 5′-untranslated region (5′-UTR) of COX4 mRNA by 40S ribosomal subunit-Met-tRNAi complex.  相似文献   
102.
103.
104.
Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient’s skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.  相似文献   
105.
Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.  相似文献   
106.
A switching mechanism in gene expression, where two genes are positively correlated in one condition and negatively correlated in the other condition, is a key to elucidating complex biological systems. There already exist methods for detecting switching mechanisms from microarrays. However, current approaches have problems under three real cases: outliers, expression values with a very small range and a small number of examples. ROS-DET overcomes these three problems, keeping the computational complexity of current approaches. We demonstrated that ROS-DET outperformed existing methods, under that all these three situations are considered. Furthermore, for each of the top 10 pairs ranked by ROS-DET, we attempted to identify a pathway, i.e. consecutive biological phenomena, being related with the corresponding two genes by checking the biological literature. In 8 out of the 10 pairs, we found two parallel pathways, one of the two genes being in each of the two pathways and two pathways coming to (or starting with) the same gene. This indicates that two parallel pathways would be cooperatively used under one experimental condition, corresponding to the positive correlation, and the two pathways might be alternatively used under the other condition, corresponding to the negative correlation. ROS-DET is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/ros-det.htm.  相似文献   
107.
Pancreatitis is an inflammatory condition of the pancreas which, in its chronic form, involves tissue destruction, exocrine and endocrine insufficiency, increased risk of pancreatic cancer, and an extensive fibrotic pathology which is due to unrelenting collagen deposition by pancreatic stellate cells (PSC). In response to noxious agents such as alcohol—excessive consumption of which is a major cause of pancreatitis in the West—normally quiescent PSC undergo a phenotypic and functional transition to activated myofibroblasts which produce and deposit collagen at high levels. This process is regulated by connective tissue growth factor (CCN2), expression of which is highly up-regulated in activated PSC. We show that CCN2 production by activated PSC is associated with enhanced expression of microRNA-21 (miR-21) which was detected at high levels in activated PSC in a murine model of alcoholic chronic pancreatitis. A positive feedback loop between CCN2 and miR-21 was identified that resulted in enhancement of their respective expression as well as that of collagen α1(I). Both miR-21 and CCN2 mRNA were present in PSC-derived exosomes, which were characterized as 50–150 nm CD9-positive nano-vesicles. Exosomes from CCN2-GFP- or miR-21-GFP-transfected PSC were taken up by other PSC cultures, as shown by direct fluorescence or qRT-PCR for GFP. Collectively these studies establish miR-21 and CCN2 as participants in a positive feedback loop during PSC activation and as components of the molecular payload in PSC-derived exosomes that can be delivered to other PSC. Thus interactions between cellular or exosomal miR-21 and CCN2 represent novel aspects of fibrogenic regulation in PSC. Summary Chronic injury in the pancreas is associated with fibrotic pathology which is driven in large part by CCN2-dependent collagen production in pancreatic stellate cells. This study shows that CCN2 up-regulation in PSC is associated with increased expression of miR-21 which, in turn, is able to stimulate CCN2 expression further via a positive feedback loop. Additionally miR-21 and CCN2 were identified in PSC-derived exosomes which effected their delivery to other PSC. The cellular and exosomal miR-21-CCN2 axis is a novel component in PSC fibrogenic signaling.  相似文献   
108.
The association of serum arginase I with oxidative stress was evaluated cross-sectionally in a healthy population. The mean levels of serum arginase I in healthy people (n = 278) were 32.6 ± 22.3 ng/ml. Significant correlations of arginase I were observed with age, WBC, RBC, alanine aminotransferase (ALT), high-sensitivity C-reactive protein (hs-CRP), uric acid, body mass index (BMI) and urinary 8-isoprostane. Multiple regression analysis showed significant associations of arginase I with WBC, RBC, urinary 8-hydroxydeoxyguanosine (8-OHdG), age, HbA1c and urinary 8-isoprostane. In the associations of arginase I with 8-OHdG, 8-isoprostane and HbA1c, confounding factors and lifestyle factors such as sex, old age, smoking and alcohol consumption were involved. It was concluded that serum arginase I was associated with oxidative stress and HbA1c in addition to age, WBC and RBC in healthy Japanese people and may become a new biomarker for early prediction of diabetes mellitus and other oxidative stress-related diseases.  相似文献   
109.
Osteoclasts are unique multinucleated cells formed by fusion of preosteoclasts derived from cells of the monocyte/macrophage lineage, which are induced by RANKL. However, characteristics and subpopulations of osteoclast precursor cells are poorly understood. We show here that a combination of TNF-α, TGF-β, and M-CSF efficiently generates mononuclear preosteoclasts but not multinucleated osteoclasts (MNCs) in rat bone marrow cultures depleted of stromal cells. Using a rat osteoclast-specific mAb, Kat1, we found that TNF-α and TGF-β specifically increased Kat1+c-fms+ and Kat1+c-fms cells but not Kat1c-fms+ cells. Kat1c-fms+ cells appeared in early stages of culture, but Kat1+c-fms+ and Kat1+c-fms cells increased later. Preosteoclasts induced by TNF-α, TGF-β, and M-CSF rapidly differentiated into osteoclasts in the presence of RANKL and hydroxyurea, an inhibitor of DNA synthesis, suggesting that preosteoclasts are terminally differentiated cells. We further analyzed the expression levels of genes encoding surface proteins in bone marrow macrophages (BMM), preosteoclasts, and MNCs. Preosteoclasts expressed itgam (CD11b) and chemokine receptors CCR1 and CCR2; however, in preosteoclasts the expression of chemokine receptors CCR1 and CCR2 was not up-regulated compared to their expression in BMM. However, addition of RANKL to preosteoclasts markedly increased the expression of CCR1. In contrast, expression of macrophage antigen emr-1 (F4/80) and chemokine receptor CCR5 was down-regulated in preosteoclasts. The combination of TNF-α, TGF-β, and M-CSF induced Kat1+CD11b+ cells, but these cells were also induced by TNF-α alone. In addition, MIP-1α and MCP-1, which are ligands for CCR1 and CCR2, were chemotactic for preosteoclasts, and promoted multinucleation of preosteoclasts. Finally, we found that Kat1+c-fms+ cells were present in bone tissues of rats with adjuvant arthritis. These data demonstrate that TNF-α in combination with TGF-β efficiently generates preosteoclasts in vitro. We delineated characteristics that are useful for identifying and isolating rat preosteoclasts, and found that CCR1 expression was regulated in the fusion step in osteoclastogenesis.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号