首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   8篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   9篇
  2013年   10篇
  2012年   11篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   10篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
51.
About 5% of the human genome consists of large-scale duplicated segments of almost identical sequences. Segmental duplications (SDs) have been proposed to be involved in non-allelic homologous recombination leading to recurrent genomic variation and disease. It has also been suggested that these SDs are associated with syntenic rearrangements that have shaped the human genome. We have analyzed 14 members of a single family of closely related SDs in the human genome, some of which are associated with common inversion polymorphisms at chromosomes 8p23 and 4p16. Comparative analysis with the mouse genome revealed syntenic inversions for these two human polymorphic loci. In addition, 12 of the 14 SDs, while absent in the mouse genome, occur at the breaks of synteny; suggesting a non-random involvement of these sequences in genome evolution. Furthermore, we observed a syntenic familial relationship between 8 and 12 breakpoint-loci, where broken synteny that ends at one family member resumes at another, even across different chromosomes. Subsequent genome-wide assessment revealed that this relationship, which we named continuation-of-synteny, is not limited to the 8p23 family and occurs 46 times in the human genome with high frequency at specific chromosomes. Our analysis supports a non-random breakage model of genomic evolution with an active involvement of segmental duplications for specific regions of the human genome. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   
52.
Recent advances in sequencing technology have enabled the rapid generation of billions of bases at relatively low cost. A crucial first step in many sequencing applications is to map those reads to a reference genome. However, when the reference genome is large, finding accurate mappings poses a significant computational challenge due to the sheer amount of reads, and because many reads map to the reference sequence approximately but not exactly. We introduce Hobbes, a new gram-based program for aligning short reads, supporting Hamming and edit distance. Hobbes implements two novel techniques, which yield substantial performance improvements: an optimized gram-selection procedure for reads, and a cache-efficient filter for pruning candidate mappings. We systematically tested the performance of Hobbes on both real and simulated data with read lengths varying from 35 to 100 bp, and compared its performance with several state-of-the-art read-mapping programs, including Bowtie, BWA, mrsFast and RazerS. Hobbes is faster than all other read mapping programs we have tested while maintaining high mapping quality. Hobbes is about five times faster than Bowtie and about 2–10 times faster than BWA, depending on read length and error rate, when asked to find all mapping locations of a read in the human genome within a given Hamming or edit distance, respectively. Hobbes supports the SAM output format and is publicly available at http://hobbes.ics.uci.edu.  相似文献   
53.
The effectiveness and potential immunosuppressive effects of anti-inflammatory glucocorticoids in the lungs of severe acute respiratory syndrome (SARS) patients are undefined. We treated porcine respiratory coronavirus (PRCV)-infected conventional pigs with the corticosteroid dexamethasone (DEX) as a model for SARS. Innate and Th1 cytokines in bronchoalveolar lavage (BAL) and serum were elevated in PRCV-infected pigs compared to controls, but were decreased after DEX treatment in the PRCV-infected, DEX-treated (PRCV/DEX) pigs. Although decreased in BAL, Th2 cytokine levels were higher in serum after DEX treatment. Levels of the proinflammatory cytokine interleukin-6 in BAL and serum were decreased in PRCV/DEX pigs early but increased later compared to those in phosphate-buffered saline-treated, PRCV-infected pigs, corresponding to a similar trend for lung lesions. PRCV infection increased T-cell frequencies in BAL, but DEX treatment of PRCV-infected pigs reduced frequencies of T cells; interestingly B and SWC3a(+) (monocytes/macrophages/granulocytes) cell frequencies were increased. DEX reduced numbers of PRCV-stimulated Th1 gamma interferon-secreting cells in spleen, tracheobroncheolar lymph nodes, and blood. Our findings suggest that future glucocorticoid treatment of SARS patients should be reconsidered in the context of potential local immunosuppression of immune responses in lung and systemic Th1 cytokine-biased suppression.  相似文献   
54.
Microarray-based clinical tests have become powerful tools in the diagnosis and treatment of diseases. In contrast to traditional DNA-based tests that largely focus on single genes associated with rare conditions, microarray-based tests are ideal for the study of diseases with underlying complex genetic causes. Several microarray based tests have been translated into clinical practice such as MammaPrint and AmpliChip CYP450. Additional cancer-related microarray-based tests are either in the process of FDA review or under active development, including Tissue of Tumor Origin and AmpliChip p53. All diagnostic microarray testing is ordered by physicians and tested by a Clinical Laboratories Improvement Amendment-certified (CLIA) reference laboratory. Recently, companies offering consumer based microarray testing have emerged. Individuals can order tests online and service providers deliver the results directly to the clients via a password-protected secure website. Navigenics, 23andMe and deCODE Genetics represent pioneering companies in this field. Although the progress of these microarray-based tests is extremely encouraging with the potential to revolutionize the recognition and treatment of common diseases, these tests are still in their infancy and face technical, clinical and marketing challenges. In this article, we review microarray-based tests which are currently approved or under review by the FDA, as well as the consumer-based testing. We also provide a summary of the challenges and strategic solutions in the development and clinical use of the microarray-based tests. Finally, we present a brief outlook for the future of microarray-based clinical applications.  相似文献   
55.
Samples from stones and sediments of a coastal site in the Bay of Bengal (Indian Ocean) yielded as many as 39 new bacterial isolates capable of precipitating calcium carbonate (CaCO3). Molecular identification revealed that these bacteria belonged predominantly to the phyla Firmicutes and Proteobacteria. Culture studies showed that nitrogen sources controlled the metabolic pathway of crystal precipitation, which was restricted to three reaction pathways, namely the deamination of amino acids, ureolytic nitrate reduction and dissimilatory nitrate reduction. The sequence of crystal morphogenesis clearly showed that bacterial precipitation of CaCO3 led to predominantly spherical structures with time. The present investigation provides the first demonstration of the bacterial contribution and mechanisms involved in the calcareous consolidation of stones and sediments by bacteria in the marine environment.  相似文献   
56.
The Hsp70 chaperone system plays a critical role in cellular homeostasis by binding to client protein molecules. We have recently shown by methyl‐TROSY NMR methods that the Escherichia coli Hsp70, DnaK, can form multiple bound complexes with a small client protein, hTRF1. In an effort to characterize the interactions further we report here the results of an NMR‐based titration study of hTRF1 and DnaK, where both molecular components are monitored simultaneously, leading to a binding model. A central finding is the formation of a previously undetected 3:1 hTRF1‐DnaK complex, suggesting that under heat shock conditions, DnaK might be able to protect cytosolic proteins whose net concentrations would exceed that of the chaperone. Moreover, these results provide new insight into the heterogeneous ensemble of complexes formed by DnaK chaperones and further emphasize the unique role of NMR spectroscopy in obtaining information about individual events in a complex binding scheme by exploiting a large number of probes that report uniquely on distinct binding processes.  相似文献   
57.
For more than a quarter of a century, sequencing technologies from Sanger’s method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.  相似文献   
58.
The interactions of three related cationic porphyrins, TMPyP4, TMPyP3 and TMPyP2, with a WT 39-mer Bcl-2 promoter sequence G-quadruplex were studied using Circular Dichroism, ESI mass spectrometry, Isothermal Titration Calorimetry, and Fluorescence spectroscopy. The planar cationic porphyrin TMPyP4 (5, 10, 15, 20-meso-tetra (N-methyl-4-pyridyl) porphine) is shown to bind to a WT Bcl-2 G-quadruplex via two different binding modes, an end binding mode and a weaker mode attributed to intercalation. The related non-planar ligands, TMPyP3 and TMPyP2, are shown to bind to the Bcl-2 G-quadruplex by a single mode. ESI mass spectrometry experiments confirmed that the saturation stoichiometry is 4:1 for the TMPyP4 complex and 2:1 for the TMPyP2 and TMPyP3 complexes. ITC experiments determined that the equilibrium constant for formation of the (TMPyP4)1/DNA complex (K1 = 3.7 × 106) is approximately two orders of magnitude greater than the equilibrium constant for the formation of the (TMPyP2)1/DNA complex, (K1 = 7.0 × 104). Porphyrin fluorescence is consistent with intercalation in the case of the (TMPyP4)3/DNA and (TMPyP4)4/DNA complexes. The non-planar shape of the TMPyP2 and TMPyP3 molecules results in both a reduced affinity for the end binding interaction and the elimination of the intercalation binding mode.  相似文献   
59.
60.
A large proportion of the CD8(+) T cell pool in persons chronically infected with HIV consists of cells that show features of replicative senescence, an end stage characterized by irreversible cell cycle arrest, multiple genetic and functional changes, and shortened telomeres. The objective of our research was to determine whether constitutive expression of the gene for the human telomerase (hTERT) can prevent senescence-induced impairments in human virus-specific CD8(+) T cells, particularly in the context of HIV-1 disease. Our results indicate that hTERT-expressing HIV-specific CD8(+) lymphocytes show both an enhanced and sustained capacity to inhibit HIV-1 replication in in vitro coculture experiments, as well as prolonged ability to produce IFN-gamma and TNF-alpha in response to stimulation with HIV-1-derived peptides, as compared with vector-transduced controls. Loss of CD28 expression, the signature change of replicative senescence in cell culture, was retarded in those CD8(+) T cell cultures that had high levels of CD28 at the time of hTERT transduction. These findings suggest that telomere shortening may be the primary driving force behind several aspects of CD8(+) T cell dysfunction associated with replicative senescence. We also demonstrate reduced accumulation of the p16(INK4a) and p21(WAF1) cell cycle inhibitors in hTERT-transduced lymphocytes, providing a possible mechanism by which stable hTERT expression is able to circumvent the senescence barrier in CD8(+) T cells. Given the key role of CD8(+) T cell function in controlling a variety of acute and latent viral infections, approaches to retard the functional decrements associated with replicative senescence may lead to novel types of immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号