首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   46篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   7篇
  2019年   4篇
  2018年   10篇
  2017年   11篇
  2016年   19篇
  2015年   23篇
  2014年   27篇
  2013年   41篇
  2012年   39篇
  2011年   47篇
  2010年   25篇
  2009年   27篇
  2008年   51篇
  2007年   59篇
  2006年   43篇
  2005年   46篇
  2004年   50篇
  2003年   45篇
  2002年   47篇
  2001年   15篇
  2000年   17篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   11篇
  1995年   11篇
  1994年   6篇
  1993年   8篇
  1992年   9篇
  1991年   11篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有790条查询结果,搜索用时 171 毫秒
81.
In DNA damage responses, the Fanconi anemia (FA) protein, FancD2, is targeted to chromatin and forms nuclear foci following its monoubiquitination, a process likely catalyzed by the FA core complex. Here, we show that a chicken FancD2-ubiquitin fusion protein, carrying a Lys-Arg substitution removing the natural monoubiquitination site (D2KR-Ub), could reverse cisplatin hypersensitivity and localize to chromatin in FANCD2-deficient DT40 cells. Importantly, the chromatin targeting was dependent on three core complex components as well as the hydrophobic surface of ubiquitin that may direct protein-protein interactions. Furthermore, a constitutively chromatin bound fusion of D2KR-histone H2B could complement cisplatin sensitivity in FANCD2- but not FANCC-, FANCG-, or FANCL-deficient cells. Thus these core complex components have an additional function in the DNA repair, which is independent of the monoubiquitination and chromatin targeting of FancD2. These results define functional consequences of FancD2 monoubiquitination and reveal previously hidden functions for the FA protein core complex.  相似文献   
82.
Proteomic analysis of slow- and fast-twitch skeletal muscles   总被引:5,自引:0,他引:5  
Skeletal muscles are composed of slow- and fast-twitch muscle fibers, which have high potential in aerobic and anaerobic ATP production, respectively. To investigate the molecular basis of the difference in their functions, we examined protein profiles of skeletal muscles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis with pH 4-7 and 6-11 isoelectric focusing gels. A comparison between rat soleus and extensol digitorum longus (EDL) muscles that are predominantly slow- and fast-twitch fibers, respectively, showed that the EDL muscle had higher levels of glycogen phosphorylase, most glycolytic enzymes, glycerol 3-phosphate dehydrogenase, and creatine kinase; while the soleus muscle had higher levels of myoglobin, TCA cycle enzymes, electron transfer flavoprotein, and carbonic anhydrase III. The two muscles also expressed different isoforms of contractile proteins including myosin heavy and light chains. These protein patterns were further compared with those of red and white gastrochnemius as well as red and white quadriceps muscles. It was found that metabolic enzymes showed a concerted regulation dependent on muscle fiber types. On the other hand, expression of contractile proteins seemed to be independent of the metabolic characteristics of muscle fibers. These results suggest that metabolic enzymes and contractile proteins show different expression patterns in skeletal muscles.  相似文献   
83.
The cytoskeletal stress fiber structure plays essential roles in various kinds of cellular functions such as shape maintenance, active motility and mechanosensing, and its structure is dynamically reorganized under each functional process. In known reorganization mechanisms of the stress fibers, a change in its mechanical condition has been suggested as one of the key mediators that affect the reorganization process. Some experimental studies have clarified that tension release in the stress fibers induces fiber depolymerization that is considered to be the initial phase of the reorganization process. However, quantitative mechanical values such as strain or stress that induce depolymerization have still not been evaluated. This study is aimed at the quantitative evaluation of the mechanical value that induces stress fiber depolymerization, to gain a basic understanding of the reorganization phenomenon from a mechanical viewpoint. Osteoblastic cells (MC3T3-E1) were cultured on prestretched silicone rubber substrate. Compressive deformation was applied to the cells by uniaxially releasing the prestretched substrate strain and change in the stress fiber structure was observed. The results indicated that the compressive strain magnitude, not in the whole cell body but in the stress fiber itself, is important to induce disassembly of the stress fiber structure. The existence of a threshold strain magnitude for initiating fiber disassembly was also suggested; the threshold strain magnitude was evaluated as approximately -0.20.  相似文献   
84.
Cisplatin causes nephropathy accompanied by two types of cell death, necrosis and apoptosis, according to its dosage. The mechanisms of necrosis are still unclear. In this study, we examined how high doses of cisplatin induce cell injury and whether a high affinity sodium-dependent glucose transporter (SGLT1) has a cytoprotective function in renal epithelial LLC-PK1 cells. Cisplatin decreased in transepithelial electrical resistance (TER) and increased in the number of necrotic dead cells in a time dependent manner. Phloridzin, a potent SGLT1 inhibitor, enhanced both TER decrease and increase of necrotic dead cells caused by cisplatin. Cisplatin increased in the intracellular nitric oxide, superoxide anion and peroxynitrite productions. Phloridzin enhanced the peroxynitrite production caused by cisplatin. The intracellular diffusion of ZO-1 and TER decrease caused by cisplatin were inhibited by N-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor. Protein kinase C was not involved in the cisplatin-induced injury. 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrinato iron (III) and reduced glutathione, peroxynitrite scavengers, inhibited the cisplatin-induced ZO-1 diffusion, TER decrease, and increase of necrotic dead cells. These results suggest that peroxynitrite is a key mediator in the nephrotoxicity caused by high doses of cisplatin. SGLT1 endogenously carries out the cytoprotective function by the reduction of peroxynitrite production.  相似文献   
85.
We previously reported that oxidative stress is associated with unloading-mediated ubiquitination of muscle proteins. To further elucidate the involvement of oxidative stress in ubiquitination, we examined the ubiquitination profile in rat myoblastic L6 cells after treatment with hydrogen peroxide. Hydrogen peroxide induced many ubiquitinated proteins with low molecular masses (less than 60 kDa) as well as high molecular masses (more than 160 kDa). Among them, a 42-kDa-ubiquitinated protein was abundantly accumulated and immediately disappeared after the treatment. Microsequencing revealed that the 42-kDa-protein was identical to the mono-ubiquitinated form of rat lactate dehydrogenase A (LDH-A), and we confirmed that hydrogen peroxide induced the mono-ubiquitination of LDH-A in COS7 cells overexpressing LDH-A and ubiquitin. Under unloading conditions, such as tail-suspension and spaceflight, mono-ubiquitinated LDH was accumulated in gastrocnemius muscle. Interestingly, E-64-d plus pepstatin, lysosomal protease inhibitors, further accumulated mono-ubiquitinated LDH-A in the cells after treatment with hydrogen peroxide, while they did not affect the amount of poly-ubiquitinated LDH. In contrast, epoxomicin, a potent proteasome inhibitor, did not change the amount of mono-ubiquitinated LDH-A in L6 cells treated with hydrogen peroxide, although it significantly increased the amount of poly-ubiquitinated LDH. Our results suggest that oxidative stress induces not only poly-ubiquitination but also mono-ubiquitination of LDH-A, which may be involved in its lysosomal degradation during unloading.  相似文献   
86.
The LARGE gene is thought to encode a putative glycosyltransferase because of its typical topology. However, no enzyme activity has been demonstrated yet, although the gene apparently supports the functional maturation of alpha-dystroglycan by glycosylation when it is transfected into cells. A novel homologous gene to LARGE was identified and named LARGE2. LARGE2 recombinant was co-expressed with alpha-dystroglycan in human embryonic kidney 293T cells to determine its activity to support the maturation of alpha-dystroglycan. The alpha-dystroglycan co-transfected with LARGE2 was more highly glycosylated than that co-transfected with LARGE. Pull-down experiments demonstrated binding activity of LARGE2 as well as LARGE toward alpha-dystroglycan. LARGE2 was found to support the maturation of alpha-dystroglycan more effectively than LARGE. Both of them are ubiquitously expressed in many tissues, except the brain where LARGE2 was not expressed at all. This compensatory function can explain the residual functionally glycosylated alpha-dystroglycan in a patient with MDC1D whose LARGE genes are congenitally null.  相似文献   
87.
A reaction of Cu(II) nitrate and 4,4,5,5-tetramethyl-2-(2-hydroxophenyl)imidazolin-1-oxyl (IM2PhOH) with potassium methoxide in methanol gave a homoleptic bis(imino nitroxide) complex of [Cu(IM2PhO)2] (1). The single-crystal X-ray analysis of 1 showed that the imino nitroxide anion, IM2PhO, chelated to a CuII ion via an imino-N and a phenoxide-O atoms to form a six-membered chelate ring. The coordination geometry around the Cu(II) ion was a distorted square-planar polygon; the dihedral angle between the two coordination planes, each of which was defined by Cu and two ligating atoms of IM2PhO, was 40.81°. The temperature dependences of the magnetic susceptibility and the EPR spectra of 1 indicate that the magnetic interaction between Cu(II) and the imino nitroxide is ferromagnetic, while there is a moderate antiferromagnetic interaction between two coordinated imino nitroxides. A balance between these opposite interactions attains the lowest molecular doublet spin-state in 1. The variable temperature magnetic circular dichroism (MCD) spectrum of the complex 1 also showed two negative components with a large C term, which may be due to the charge-transfer (CT) transition originated from the d orbital to the SOMO π* orbital in the spin-coupled IM2PhO radicals; resulting in the largely split doublet excited states with the spin singlet and triplet d8 configurations.  相似文献   
88.
89.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous analysis of the local anesthetic amide drugs, bupivacaine, mepivacaine and ropivacaine, belonging to the pipecoloxylidide group using a C(18) reversed-phase column (150 x 4.6 mm I.D.) filled with 5-microm particles and attached to a UV detector. The mobile phase was composed of acetonitrile-methanol-30 mM NaH(2)PO(4) (pH 5.6) (100:100:300, v/v/v) and the flow rate was 1ml/min. The absorbance of the eluate was monitored at 210 nm. The retention times of the three compounds were: 4.6 min (mepivacaine), 9.7min (ropivacaine) and 16.4 min (bupivacaine). With this sample preparation method, good and consistent recoveries of the three compounds were obtained: 88-91% for mepivacaine, 87-89% for ropivacaine and 88-91% for bupivacaine. The limit of quantification for three compounds in human serum was 2 ng/ml for mepivacaine, 5 ng/ml for bupivacaine and ropivacaine. This method may be useful in clinical and forensic applications for the determination or identification of the local anesthetic drugs: bupivacaine, mepivacaine or ropivacaine.  相似文献   
90.
Previous studies have demonstrated that central injection of orexin-A affects renal sympathetic nerve activity (RSNA) and blood pressure (BP) in both anesthetized and unanesthetized rats. In the present study, we examined, using urethane-anesthetized rats, the dose-dependent effects of intravenous (iv) or intralateral cerebral ventricular (LCV) injection of various doses of orexin-A on RSNA and BP. We found that injection of a low dose of orexin-A (10 ng iv or 0.01 ng LCV) suppressed RSNA and BP significantly. Conversely, a high dose (1000 ng iv or 10 ng LCV) of orexin-A elevated both RSNA and BP significantly. Pretreatment with either iv or LCV injection of thioperamide, a histaminergic H(3)-receptor antagonist, eliminated the effects of a low dose of orexin-A on both RSNA and BP. Both iv and LCV injection of diphenhydramine, a histaminergic H(1)-receptor antagonist, abolished the effects of a high dose of orexin-A on RSNA and BP. Furthermore, bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of both low and high doses of orexin-A on RSNA and BP. These findings suggest that orexin-A affects RSNA and BP in a dose-dependent manner and that the SCN and histaminergic nerve may be involved in the dose-different effects of orexin-A in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号